bannerbannerbanner
Мир под напряжением. История электричества: опасности для здоровья, о которых мы ничего не знали

Артур Фёрстенберг
Мир под напряжением. История электричества: опасности для здоровья, о которых мы ничего не знали

Полученные данные оказались неожиданными. Во-первых, сигнал, полученный в Квебеке сразу после передачи из Антарктиды, оказался мощнее ожидаемого. Волны, вышедшие из Антарктиды, не только вызвали новое излучение частиц магнитосферы, но и усилились более чем в тысячу раз в магнитосфере, прежде чем вернуться на Землю и попасть на приемник в Квебеке. Мощности сигнала в половину ватта оказалось достаточно, чтобы засечь его на противоположной стороне Земли после передачи через магнитосферу[217]. Вторым сюрпризом стало то, что Роберваль получил частоты, вообще не связанные с теми, что были отправлены в Сайпле, но зато они были кратны 60 Гц. Сигнал в Сайпле за время путешествия по космосу изменился – он нес на себе печать линий электропередачи.

Со времен первых открытий ученые многое узнали об этой форме загрязнения, которая называется «гармоническим излучением линий электропередачи». Оказывается, гармоники из всех линий электропередачи в мире постоянно уходят в магнитосферу, где значительно усиливаются и начинают отскакивать туда-сюда между Северным и Южным полушариями, создавая собственные свисты, похожие на те, что образуются после удара молнии.

Но между ними есть фундаментальное различие. До 1889 г. свисты и другие звуки, вызываемые молниями, звучали постоянно и по всему диапазону земного инструмента. Сейчас же эта музыка неестественна и притуплена, часто ограничена частотами, кратными 50 или 60 Гц. Все компоненты естественной симфонии радикально изменились. «Хор восхода» стал тише по воскресеньям, чем в другие дни недели, а начальные частоты большинства «хоровых» излучений – гармоники линий электропередачи[218]. «Похоже, что весь шипящий диапазон вызывается излучением линий электропередачи», – писал Хелливелл в 1975 г. А естественные медленные пульсации магнитного поля Земли с частотой ниже 1 Гц, которые тоже важны для всех живых существ, сильнее всего по выходным – судя по всему, потому, что в будни их подавляет излучение линий электропередачи, которое сильнее в эти дни[219]. Энтони Фрэзер-Смит, еще один ученый из Стэнфорда, проанализировал данные геомагнитной активности, которые собирали с 1868 г., и показал, что это не новое явление: оно проявляется с тех самых пор, как впервые начали использовать переменный ток, причем со временем это явление становится все выраженнее[220]. Данные, собранные в 1958–1992 гг., показывают, что активность Pc 1, представляющая собой геомагнитные пульсации между 0,2 и 5 Гц, в выходные повышается на 5–20 % по сравнению с серединой недели[221].

Структура радиационных поясов Ван Аллена, похоже, тоже изменилась. То, что министерство обороны собиралось сделать целенаправленно, уже, похоже, было сделано, причем в весьма серьезных масштабах, высоковольтными линиями электропередачи. Физики долго задавали себе вопрос: почему Землю окружают два радиационных пояса, заполненных электронами, а вот между ними лежит слой, в котором электронов почти нет? Этот «электронный слой», как считают некоторые ученые, постоянно лишается электронов из-за того, что они взаимодействуют с излучением линий электропередачи[222]. Эти электроны, в свою очередь, дождем проливаются на Землю, меняя электрические свойства атмосферы[223]. Из-за этого не только повышается частота гроз[224], но и могут измениться значения резонансов Шумана, на которые настроены все живые существа[225].

Короче говоря, электромагнитная среда Земли сейчас значительно отличается от той, какой она была до 1889 г. Спутниковые наблюдения показывают, что излучение линий электропередачи зачастую перебивает естественное излучение молний[226]. Излучение линий электропередачи настолько сильно, что ученые, изучающие атмосферу, жалуются, что не могут заниматься фундаментальными исследованиями: ни на Земле, ни даже в космосе не осталось мест, где естественные явления можно изучать с помощью ОНЧ-приемника[227].

В естественных условиях, какими они были до 1889 г., мощная ОНЧ-активность, которая ведет к электронному дождю и сдвигу резонансов Шумана, случалась только во время геомагнитных бурь. Сейчас же магнитная буря просто не заканчивается.

Д

Грипп

Если атмосфера иногда электризуется сильнее обычной степени, необходимой, чтобы поддерживать тело в должном состоянии возбуждения, то нервы, должно быть, возбуждаются слишком сильно, и под постоянным действием чрезмерного стимула становятся крайне раздражительными и подверженными болезням.

Ноа Уэбстер, A Brief History of Epidemic and Pestilential Diseases, 1799, p. 38.

Крупные, быстрые качественные изменения в электромагнитной среде Земли случались шесть раз в истории.

В 1889 г. появилось гармоническое излучение линий электропередачи. С этого самого года магнитное поле Земли несет на себе отпечаток частот ЛЭП и их гармоник. Именно в этом году начала подавляться естественная магнитная активность Земли. Это подействовало на всю жизнь на Земле. Эпоха линий электропередачи началась с пандемии гриппа 1889 г.

В 1918 г. началась эпоха радио. В том году построили сотни мощных радиостанций, работающих на низких и сверхнизких частотах – тех самых, которые сильнее всего влияют на магнитосферу. Эпоха радио началась с пандемии «испанки» 1918 г.

В 1957 г. началась эпоха радаров. В том году построили сотни мощных радарных станций раннего предупреждения, усыпав ими все Северное полушарие; они направляли миллионы ватт микроволновой энергии к небу. Низкочастотные компоненты этих волн попадали по магнитным линиям в Южное полушарие, загрязняя и его. Эпоха радаров началась с пандемии «азиатского» гриппа 1957 г.

В 1968 г. началась эпоха спутников. Было запущено сразу несколько десятков спутников, мощность передатчиков у которых была сравнительно низкой. Но, поскольку они уже находились в магнитосфере, они оказали на нее не меньшее воздействие, чем то небольшое излучение, что попадало туда с наземных источников. Спутниковая эра началась с пандемии «гонконгского» гриппа 1968 г.

Две другие технологические вехи – начало эпохи беспроводной связи и активация Программы исследования ионосферного рассеяния высокочастотных радиоволн (HAARP) – принадлежат к совсем недавнему времени, и мы обсудим их позже.

10. Порфирины и основа жизни

Я даже почти не надеюсь объяснить тонкие различия между нормальной и больной клеткой, если уж мы не понимаем даже основных различий между кошкой и камнем.

 

Альберт Сент-Дьёрдьи

Как ни странно, «порфирин» – не широко известное слово. Это не сахар, не жир и не белок, не витамин, не минерал и не гормон. Но он лежит куда ближе к основе жизни, чем любые другие ее компоненты, потому что без него мы не смогли бы дышать. Растения бы не росли. В атмосфере не было бы кислорода. Везде, где энергия преображается, везде, где текут электроны, ищите порфирины. Когда электричество меняет проводимость нервов или мешает клеточному метаболизму, в этом принимают прямое участие порфирины.

Когда я пишу эти строки, я вспоминаю о дорогой подруге, которая недавно умерла. Последние семь лет жизни ей пришлось провести без электричества и почти не видя солнца. Она редко выходила на улицу днем, а когда все же выходила, закутывалась с ног до головы в одежду из толстой кожи, надевала широкополую кожаную шляпу, которая полностью закрывала лицо, и очки с двумя толстыми темными линзами. Бывшая танцовщица, обожавшая музыку, природу и прогулки, Бетани оказалась практически брошена миром, в котором ей больше не было места.

Ее заболевание, скорее всего, вызванное многолетней работой в компьютерной компании, – это классический пример болезни, которая известна медицине только с 1891 г.; ее появление стало одним из побочных эффектов внезапного всемирного распространения электрической техники. Связь этой болезни с электричеством была открыта лишь век спустя. Хотя сейчас она считается невероятно редким генетическим заболеванием, поражающим от силы одного человека из пятидесяти тысяч, изначально предполагалось, что она поражает не менее 10 % населения. Ее якобы «редкость» – это в первую очередь результат поведения медицинского истеблишмента, который после Второй мировой войны решил просто спрятать голову в песок.

В конце 1940-х гг. практикующие медики столкнулись с невозможным противоречием. Большинство синтетических химикатов были ядовиты. Тем не менее после войны человечество научилось легко и дешево производить продукцию из нефти, и эта продукция могла заменить практически все потребительские товары, какие можно представить. Теперь благодаря зарождавшейся нефтехимической промышленности, которая дарила нам «Лучшую жизнь с помощью химии»[228], синтетические химикаты готовы были получить повсеместное распространение. Мы носили их, спали на них, стирали ими одежду, мыли волосы, посуду и полы, купались в них, изолировали ими дом, стелили на пол ковры из них, опрыскивали ими культурные растения, лужайки и домашних питомцев, хранили с их помощью еду, покрывали ими посуду, упаковывали в них покупки, увлажняли кожу и ароматизировали свои тела.

У медиков было два варианта. Они могли изучить воздействие на здоровье сотен тысяч новых химикатов, как отдельно, так и в сочетании, которые калейдоскопом накрыли наш мир, но это практически невыполнимая задача. Даже сама такая попытка вызвала бы конфликт с быстрорастущей нефтехимической промышленностью, что привело бы к угрозе запрета большинства новых химикатов и удушению экономического бума следующих двух десятилетий.

Второй вариант – коллективно спрятать голову в песок и притворяться, что население мира не будет отравлено.

Экологическая медицина как специальность появилась в 1951 г., ее основателем был доктор Терон Рэндольф[229]. Ее создание было необходимо: масштабы отравления стали слишком огромными, чтобы их можно было полностью игнорировать. Одного количества болеющих пациентов, брошенных медицинским истеблишментом, оказалось достаточно, чтобы создать спрос на специалистов, которые умеют распознать по крайней мере некоторые из последствий контакта с новыми химикатами и лечить развивающиеся после этого болезни. Но медицинский мейнстрим закрывал глаза на эту специальность, словно ее вообще не существовало, а специалисты подвергались остракизму со стороны Американской медицинской ассоциации. Когда я в 1978–1982 гг. учился в медицинской школе, экологической медицины вообще не было в программе обучения. Химическую чувствительность, прискорбный ярлык, который повесили на миллионы отравленных пациентов, вообще не упоминали в школе. Равно как и порфирию – возможно, куда более подходящее название. О ней до сих пор не говорят ни в одной медицинской школе США.

Повышенную чувствительность к химикатам, как мы помним, впервые описал нью-йоркский врач Джордж Миллер Бирд, который считал ее симптомом нового заболевания. Первоначальная электрификация общества посредством телеграфных проводов принесла с собой целое созвездие жалоб на здоровье, известное как неврастения; эти жалобы включали в том числе склонность к аллергии и значительно пониженную стойкость к алкоголю и наркотикам.

К концу 1880-х бессонница, еще один заметный симптом неврастении, получила настолько широкое распространение в западной цивилизации, что торговля снотворными пилюлями и микстурами превратилась в большой бизнес; новые формулы появлялись на рынке чуть ли не ежегодно. Бромиды, паральдегид, хлораль, амилгидрат, уретан, гипнол, сомнал, каннабинон и другие успокоительные слетали с аптечных полок, удовлетворяя отчаянную потребность во сне, а потом и неудержимую тягу к самим средствам, при длительном применении нередко вызывающим привыкание.

В 1888 г. к этому списку добавилось еще одно лекарство. Сульфонал был снотворным средством, имевшим хорошую репутацию благодаря быстрому действию, отсутствию привыкания и сравнительно малому числу побочных эффектов. У него была лишь одна проблема, которая стала широко известна лишь после трех лет применения: сульфонал убивал людей.

Но его воздействие было странным и неожиданным. Девять из десяти человек могли принимать сульфонал большими дозами и долгое время вообще без вреда для здоровья, а вот десятый всего после нескольких малых доз (или даже одной) впадал в критическое состояние. Он чувствовал спутанность сознания, был настолько слаб, что не мог даже ходить; развивался запор, появлялись боли в животе, иногда – сыпь на коже, а моча приобретала красноватый оттенок, который часто сравнивали с цветом портвейна. Реакция на препарат была уникальна в каждом случае – она могла поражать практически любой орган, пациенты часто умирали от неожиданной остановки сердца. По сообщениям, от подобных побочных эффектов страдали от 4 до 20 % людей, принимавших сульфонал[230].

В следующие десятилетия удалось узнать химическую подоплеку этой неожиданной болезни.

Порфирины – это светочувствительные пигменты, которые играют важнейшую роль в жизни и растений, и животных, а также в экологии планеты Земля. В растениях порфирин, связанный с магнием, – это пигмент под названием хлорофилл, тот самый, который придает им зеленый цвет и отвечает за фотосинтез. У животных есть почти такая же молекула, но привязанная к железу, – пигмент под названием гем, необходимая часть гемоглобина, который делает кровь красной и позволяет ей переносить кислород. А еще это важнейшая часть миоглобина, белка, который делает мышцы красными и доставляет кислород из крови в мышечные клетки. Кроме всего прочего, гем – главный компонент цитохрома C и цитохромсоксидазы, ферментов, которые содержатся в каждой клетке любого растения, животного и бактерии; они переносят электроны из питательных веществ в кислород, чтобы наши клетки могли получать энергию. Наконец, гем – это главный компонент фермента цитохрома P450 в печени, который окисляет химикаты из окружающей среды, делая их менее токсичными.

Иными словам, порфирины – это особенные молекулы, посредники между кислородом и жизнью. Они отвечают за создание, поддержание и переработку всего кислорода в нашей атмосфере: они делают возможным выработку растениями кислорода из углекислого газа, захват растениями и животными кислорода из воздуха и использование этого кислорода живыми существами для выработки энергии путем сжигания углеводов, жиров и белков. Высокая реактивность этих молекул, которая делает их преобразователями энергии, а также склонность к связыванию с тяжелыми металлами делает их ядовитыми, когда они накапливаются в организме в избыточном количестве; так происходит при болезни, которая называется порфирией, – на самом деле, это даже не болезнь, а генетическое свойство, врожденная чувствительность к загрязнению окружающей среды.

Наши клетки производят гем из ряда других порфиринов и их молекул-предшественников за восемь этапов, каждый из которых управляется разными ферментами. Словно рабочие на конвейере, все ферменты должны действовать с одинаковой скоростью, чтобы успевать производить достаточно конечного продукта, гема. Замедление работы любого из ферментов создает «бутылочное горлышко», и порфирины и их предшественники, скопившиеся возле этого «горлышка», расходятся по всему организму, вызывая заболевания. Или, наоборот, если самый первый фермент работает быстрее остальных, то вырабатывает молекулы-предшественники быстрее, чем с ними успевают справиться следующие ферменты – с тем же самым результатом. Накопление их в коже может вызывать язвы (от небольших до сильно уродующих) и светочувствительность (от слабой до тяжелой). Накопление порфиринов в нервной системе вызывает неврологические болезни, а в других органах – другие соответствующие заболевания. А когда избыток порфиринов выводится с мочой, она приобретает цвет портвейна.

Поскольку порфирия считается очень редким заболеванием, почти во всех случаях ее путают с какой-нибудь другой болезнью. Ее вполне заслуженно называют маленьким подражателем, потому что она может поражать множество органов и выдавать себя за множество других заболеваний. Поскольку пациенты часто чувствуют себя намного хуже, чем выглядят, врачи временами предполагали у них психиатрические расстройства и отправляли в сумасшедшие дома. И, поскольку большинство людей не обращают большого внимания на свою мочу, они обычно не замечают красноватого оттенка – к тому же обычно он появляется только во время тяжелых приступов.

Ферменты гемового пути – это едва ли не самые чувствительные к токсинам из окружающей среды элементы организма. Следовательно, порфирия – это реакция на загрязнение окружающей среды, и она в самом деле была редкостью в незагрязненном мире. За исключением одной тяжелейшей, уродующей врожденной формы, случаев которой известно всего несколько сотен на весь мир, недостаток порфириновых ферментов обычно вообще не вызывает болезни. Люди – генетически разнообразный вид, и в прошлом большинство людей со сравнительно низким уровнем одного или нескольких порфириновых ферментов были просто чувствительнее к окружающей среде. В незагрязненном мире это было преимуществом для выживания: обладатели этой черты могли легко избегать мест или вещей, которые могли принести им вред. Но вот в мире, где токсичных химикатов избежать невозможно, порфириновый путь практически всегда в той или иной степени подвергается стрессу, и лишь те, у кого уровень ферментов достаточно высок, нормально переносят загрязнение окружающей среды. А чувствительность превратилась в проклятие.

Из-за того, как именно болезнь была открыта, а также по причине отсутствия синтетических химикатов в окружающей среде в то время порфирия стала известна как редкая болезнь, которая вызывается у генетически предрасположенных людей некоторыми лекарствами, в частности сульфоналом и барбитуратами, и этих лекарств необходимо было избегать. Лишь целое столетие спустя, в начале 1990-х гг., доктор Уильям Мортон, профессор гигиены труда и экологической медицины в Орегонском университете здравоохранения, понял, что в современной окружающей среде синтетические химикаты распространены намного шире, чем лекарства, так что именно они, скорее всего, являются главной причиной приступов порфирии. Мортон предположил, что спорное заболевание, известное как множественная чувствительность к химическим веществам (МЧХВ), в большинстве случаев неотличимо от одной или нескольких форм порфирии. А когда он начал проводить анализы своих пациентов с МЧХВ, то обнаружил, что у 90 % из них в самом деле наблюдается дефицит одного или нескольких порфириновых ферментов. Тогда он исследовал родословные ряда пациентов в поисках той же самой особенности и сумел продемонстрировать генетическую основу МЧХВ – ранее этого никто сделать даже не пытался, потому что у МЧХВ не было проверяемых биологических маркеров[231]. Кроме того, Мортон обнаружил дефицит порфириновых ферментов у большинства пациентов с электрочувствительностью и пришел к выводу, что электрическая и химическая чувствительность – это проявления одной и той же болезни. Порфирия, показал Мортон, – это не крайне редкая болезнь, как считается сейчас: она поражает не менее пяти или даже 10 % населения мира[232].

 

Мортон – смелый человек. В мире «редкой болезни» порфирии доминирует горстка клиницистов, которая контролирует практически все исследования и выдачу грантов в своей маленькой, выродившейся области. Они диагностируют порфирию только во время острых приступов с тяжелыми неврологическими симптомами, игнорируя более мягкие, вялотекущие случаи. Они обычно не ставят диагноз, пока уровень порфирина в моче или стуле не превысит нормальный в пять или десять раз. «Это просто глупо, – писал Мортон в 1995 г. – Все равно что диагностировать диабет только у тех, у кого начался кетоацидоз, а коронарную недостаточность – только у тех, кто перенес инфаркт миокарда»[233].

Более высокий процент, полученный Мортоном, сходится с теми цифрами, что получены более века назад, – с процентом пациентов, заболевших после приема снотворного средства сульфонала. Кроме того, сходится он и с найденным в 1960-х гг. «фиолетовым фактором», веществом, которое окрашивается в лавандовый цвет и содержится в моче не только больных порфирией, но и 5–10 % населения[234]. Фиолетовый фактор в конце концов был идентифицирован как продукт распада порфобилиногена, одного из предшественников порфирина[235]. Наконец, Мортон обнаружил – что согласуется с недавними данными из Англии, Нидерландов, Германии и России, – что устойчивые неврологические проблемы наблюдаются во время хронической, вялотекущей фазы всех типов порфирии – даже тех типов, которые, как ранее считалось, вызывают только поражение кожи[236].

Ганс Гюнтер, немецкий врач, который в 1911 г. дал порфирии ее название, писал, что «подобные больные страдают от нейропатии, бессонницы и нервной раздражительности»[237]. Мортон вернул нас к исходному взгляду на порфирию: это не просто довольно распространенная болезнь, но болезнь, чаще всего существующая в хронической форме со сравнительно мягкими симптомами. А главная ее причина – синтетические химикаты и электромагнитные поля, загрязняющие нашу современную среду.

Порфирины играют центральную роль в нашем рассказе не только из-за болезни, которая называется «порфирия» и которой болеют лишь несколько процентов населения, но и потому, что они напрямую связаны с современной эпидемией заболеваний сердца, рака и сахарного диабета, которые поразили половину мира, и потому, что само их существование – это напоминание о роли, которую электричество играет для самой жизни, роли, которую медленно прояснили несколько храбрых ученых.

В детстве Альберт Сент-Дьёрдьи ненавидел книги, и, чтобы сдать экзамены, ему пришлось нанять репетитора. Но позже, окончив в 1917 г. Будапештскую медицинскую школу, он превратился в одного из величайших мировых гениев в области биохимии. В 1929 г. он открыл витамин C, а в следующие несколько лет описал большинство этапов клеточного дыхания – эта система ныне известна как цикл Кребса. За эти два открытия он в 1937 г. получил Нобелевскую премию по физиологии и медицине. Следующие два десятилетия он потратил на изучение работы мышц. Эмигрировав в США и поселившись в Вудс-Холе, штат Массачусетс, в 1954 г. он был награжден премией Альберта Ласкера за свои открытия в этой области.

Но, возможно, его самым важным открытием стало то, которое менее всего известно, хотя этой теме он посвятил почти полжизни. Ибо 12 марта 1941 г. во время лекции в Будапеште он храбро заявил своим коллегам, что дисциплина биохимия устарела и нуждается в обновлении для XX в. Живые организмы, сказал он им, – это не просто мешки с водой, в которой, словно крохотные бильярдные шарики, плавают молекулы, устанавливая химические связи с другими бильярдными шариками, когда сталкиваются с ними. Квантовая теория, сказал он, опровергла эти старые идеи; биологам нужно изучать физику твердого тела.

Порфирин. Химическая структура молекулы


Работая по специальности, он изучал структуру молекул, участвующих в сокращении мышц, но так и не смог понять, почему же их структура именно такая и как молекулы общаются друг с другом, координируя свою активность. Он видел подобные нерешенные проблемы в биологии практически везде. «Одно из моих главных затруднений с белковой химией, – не смущаясь, говорил он коллегам, – состояло в том, что я не мог себе представить, как такая молекула может „жить“. Даже самая сложная структурная формула белка выглядит „глупо“, если можно так выразиться».

Феномен, который заставил Сент-Дьёрдьи задуматься над этими вопросами, – порфириновые системы жизни. Он указал, что у растений 2500 молекул хлорофилла составляют одну функциональную единицу, а при тусклом свете не менее 1000 молекулам хлорофилла приходится работать одновременно, чтобы расщепить одну молекулу двуокиси углерода и создать одну молекулу кислорода.

Он говорил о «ферментах окисления» – цитохромах в наших клетках – и, опять-таки, задавался вопросом, как превалирующая модель вообще может быть верной. Как геометрически расставляется целая серия крупных белковых молекул, чтобы электроны переходили от одной молекулы к другой в точной последовательности? «Если бы мы даже смогли разработать такую структуру, – говорил он, – все равно остается совершенно непонятным, как энергия, высвобожденная передачей электрона от одного вещества к другому, то есть от одного атома к другому, может делать что-то полезное».

Сент-Дьёрдьи предположил, что организмы живы потому, что из тысяч молекул формируются целые системы с общим уровнем энергии – примерно такие же, как физики описывают в кристаллах. Электронам необязательно передаваться непосредственно от одной молекулы к другой, говорил он; вместо того чтобы быть привязанными только к одному или двум атомам, электроны мобильны, принадлежат всей системе целиком и передают энергию и информацию на большие расстояния. Иными словами, жизнь – это не бильярдные шарики, а жидкие кристаллы и полупроводники.

Главный грех Сент-Дьёрдьи – не в том, что он был неправ. Он не был неправ. Но он не осознавал всей застарелой враждебности вокруг. Электричество и жизнь уже довольно давно были оторваны друг от друга; промышленная революция вот уже полтораста лет неслась вперед на всех парах. Миллионы миль электрических проводов обвили Землю, выдыхая электрические поля, пронизывающие всех живых существ. Тысячи радиостанций пропитали сам воздух электромагнитными осцилляциями, от которых невозможно скрыться. Нельзя было позволить, чтобы они влияли на кожу и кости, нервы и мышцы. Называть белки полупроводниками было запрещено. Угроза промышленности, экономике и современной культуре будет слишком высока.

Так что биохимики продолжали думать о белках, липидах и ДНК как о маленьких шариках, плавающих в водном растворе и случайно сталкивающихся друг с другом. Они даже нервную систему представляли себе подобным образом. Им все же приходилось признавать квантовую теорию, когда их заставляли, но лишь в ограниченных рамках. Биологическим молекулам по-прежнему было позволено взаимодействовать только с непосредственными соседями, а не на расстоянии. Признавать современную физику разрешалось только по чуть-чуть, словно проделывая маленькую дырочку в плотине, через которую по капельке сочатся знания, и укрепляя тем временем основную структуру, чтобы ее не снесло наводнением.

Старым знаниям о химических связях и ферментах в водном растворе теперь приходится сосуществовать с новыми моделями дыхательной цепи переноса электронов. Их пришлось выдумать, чтобы объяснить явления, которые имеют важнейшее значение для жизни: фотосинтез и дыхание. Крупным порфиринсодержащим белковым молекулам больше не нужно было двигаться и физически взаимодействовать друг с другом, чтобы происходило что-то полезное. Теперь они могли оставаться на месте, а между ними передвигались туда-сюда только электроны. Биохимия становилась куда более живой. Но ее путь был еще далек. Ибо даже в новых моделях электроны, словно мальчики-посыльные, были ограничены передвижением лишь между одной белковой молекулой и ее соседкой. Они могли, так сказать, перейти через улицу, но не уйти по большаку в далекий город. Организмы по-прежнему изображали, по сути, как мешки с водой, содержащей очень сложные химические растворы.

Законы химии объяснили много в процессах обмена веществ, электрон-транспортные цепи объяснили еще больше, но организующего принципа найти так и не удалось. Слоны вырастают из крохотных зародышей, которые появляются из единственной безмозглой клетки. Саламандры идеально восстанавливают потерянные конечности. Когда мы получаем порез или перелом, клетки и органы нашего организма мобилизуются и координируют свои действия, чтобы восстановить поврежденные ткани. Как передается эта информация? Как, цитируя Сент-Дьёрдьи, белковые молекулы «живут»?

Несмотря на ужасный грех Сент-Дьёрдьи, его предсказания сбылись. Молекулы в клетках не дрейфуют случайным образом, чтобы столкнуться друг с дружкой. Большинство из них прикреплены к мембранам. Вода внутри клеток тщательно структурирована и не похожа на свободно текущую жидкость, которая плескается в стакане, прежде чем вы ее выпьете. Пьезоэлектричество, свойство кристаллов, которое делает их полезными для производства электронной техники, которое преобразует механический стресс в электрическое напряжение, и наоборот, обнаружили в целлюлозе, коллагене, кератине, костях, шерсти, дереве, сухожилиях, стенках кровеносных сосудов, мышцах, нервах, фибрине, ДНК и у всех типов белков, которые были проверены[238]. Иными словами, электричество жизненно необходимо для биологии – хотя большинство биологов отрицают это вот уже два столетия.

Сент-Дьёрдьи был не первым, кто бросил вызов общепринятому мышлению. Уже в 1908 г. Отто Леманн, заметив близкое сходство между формами известных жидких кристаллов и многих биологических структур, предположил, что жидкокристаллическое состояние является самой основой жизни. Жидкие кристаллы, как и организмы, умеют вырастать из семян, восстанавливать раны, поглощать другие вещества или другие кристаллы, страдают от отравления, формируют мембраны, сферы, палочки, ленты и спиральные структуры, делятся, «спариваются» с другими формами и дают «потомство», имеющее характеристики обоих родителей, преобразуют химическую энергию в механическое движение.

После дерзкой будапештской лекции Сент-Дьёрдьи его идеи стали разрабатывать и другие. В 1949 г. голландский ученый Э. Кац объяснил, как электроны могут проходить через полупроводящий кристалл хлорофилла во время фотосинтеза. В 1955 г. Джеймс Бассэм и Мелвин Кальвин, работавшие на Комиссию США по атомной энергии, развили его теорию. В 1956 г. Уильям Арнольд в Национальной лаборатории «Оук-Ридж» экспериментально подтвердил, что высушенные хлоропласты – частицы зеленых растений, содержащие хлорофилл, – имеют многие свойства полупроводников. В 1959 г. Дэниэл Или из Ноттингемского университета доказал, что высушенные белки, аминокислоты и порфирины в самом деле являются полупроводниками. В 1962 г. Родерик Клейтон, еще один сотрудник «Оук-Риджа», обнаружил, что фотосинтетические ткани живых растений ведут себя как полупроводники. В 1970 г. Алан Адлер из Института Новой Англии показал, что тонкие пленки из порфиринов ведут себя точно так же. В 1970-х гг. биохимик Фримен Коуп из Центра разработки военно-морской авиации США в Уорминстере, штат Пенсильвания, подчеркнул важность физики твердого тела для истинного понимания биологии, как и биолог Аллан Фрей, в то время самый активный американский исследователь воздействия микроволновой радиации на нервную систему. Лин Вэй, профессор электротехники в Университете Ватерлоо (Онтарио), заявил, что нервный аксон – это линия электропередачи, а его мембрана – ионный транзистор. Он сказал, что эквивалентные схемы «можно найти в любой современной книге по электронной технике», а «поведение нерва легко предсказать посредством полупроводниковой физики». Когда он сам так поступил, его уравнения предсказали некоторые свойства нервов, которые были – и остаются – загадкой для физиологов.

217Park and Chang 1978.
218Bullough 1995.
219Fraser-Smith 1979, 1981; Villante et al. 2004; Guglielmi and Zotov 2007.
220Fraser-Smith 1979.
221Guglielmi and Zotov 2007.
222Bullough et al. 1976; Tatnall et al. 1983; Bullough 1995.
223Boerner et al. 1983.
224Bullough 1985.
225Cannon and Rycroft 1982.
226Bullough et al. 1976; Luette et al. 1977, 1979; Park et al. 1983; Imhof et al. 1986.
227Kornilov 2000.
228Вариация рекламного слогана компании DuPont. – Прим. пер.
229Randolph 1987, chap. 4.
230Leech 1888; Matthes 1888; Hay 1889; Ireland 1889; Marandon de Montyel 1889; Revue des Sciences Médicales 1889; Rexford 1889; Bresslauer 1891; Fehr 1891; Geill 1891; Hammond 1891; Lepine 1893; With 1980.
231Morton 2000.
232Morton 1995, 1998, 2000, 2001, personal communication.
233Morton 1995, p. 6.
234Hoffer and Osmond 1963; Huszak et al. 1972; Irvine and Wetterberg 1972; Pfeiffer 1975; McCabe 1983; Durko et al. 1984; McGinnis et al. 2008a, 2008b; Mikirova 2015.
235Moore et al. 1987, pp. 42–43.
236Gibney et al. 1972; Petrova and Kuznetsova 1972; Holtmann and Xenakis 1978, 1978; Pierach 1979; Hengstman et al. 2009;.
237Quoted in Mason et al. 1933.
238Athenstaedt 1974; Fukuda 1974.
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38 
Рейтинг@Mail.ru