bannerbannerbanner
Мир под напряжением. История электричества: опасности для здоровья, о которых мы ничего не знали

Артур Фёрстенберг
Мир под напряжением. История электричества: опасности для здоровья, о которых мы ничего не знали

6. Поведение растений

Когда я впервые ознакомился с работами сэра Джагадиша Чандры Боса, я был поражен. Бос, сын государственного служащего из Восточной Бенгалии, учился в Кембридже и получил там научную степень по естествознанию, с которой вернулся на родину. Гениальный физик и ботаник, он был невероятно внимателен к деталям и обладал уникальным талантом конструктора прецизионной измерительной аппаратуры. Интуитивно понимая, что у всех живых существ одинаковые фундаментальные функции, Бос построил элегантные механизмы, которые могли ускорять движения обычных растений в сто миллионов раз, автоматически записывая эти движения, и с их помощью начал изучать поведение растений – точно так же, как зоологи изучают поведение животных. Благодаря этому он сумел найти нервы растений – не только у необычно активных растений вроде мимозы стыдливой или венериной мухоловки, но и у самых «обычных», – после чего, разрезав их, доказал, что они вырабатывают потенциал действия, такой же, как и у любых нервов животных. Он провел эксперименты с проводимостью нервов папоротника, похожие на те, что проводили физиологи с седалищными нервами лягушек.

Сэр Джагадиш Чандр Бос (1858–1937)


Кроме того, Бос нашел пульсирующие клетки в стеблях растений, которые, как он показал, управляют перекачиванием сока и имеют особые электрические свойства, и построил так называемый магнетический сфигмограф, который усиливал пульсации в десять миллионов раз, чтобы измерить изменения в давлении сока.

Я был изумлен. В современных учебниках ботаники вы не найдете и намека на то, что у растений есть что-то похожее на сердце и нервную систему. Книги Боса, в том числе Plant Response («Реакция растений», 1902), The Nervous Mechanism of Plants («Нервный механизм растений», 1926), Physiology of the Ascent of Sap («Физиология подъема сока растений», 1923) и Plant Autographs and Their Revelations («Автографы растений и их откровения», 1927), прозябают в архивах исследовательских библиотек.

Но Бос не просто нашел нервы у растений. Он продемонстрировал воздействие на них электричества и радиоволн, а потом получил похожие результаты с седалищными нервами лягушек, доказав исключительную чувствительность всех живых существ к электромагнитным стимулам. Несомненно, он был одним из главных экспертов в этой области. Его назначили исполняющим обязанности профессора в Президентском колледже Калькутты в 1885 г. Он внес вклад в отрасль физики твердого тела и изобрел устройство, называемое когерером, с помощью которого расшифровали первое сообщение, отправленное Маркони по беспроводной связи через Атлантический океан. Собственно, Бос устроил публичную демонстрацию беспроводной связи в лекционном зале в Калькутте в 1895 г., более чем за год до первой демонстрации Маркони на равнине Солсбери. Но Бос не подавал заявок на патенты и не искал славы как изобретатель радио. Он вообще отказался от дальнейших работ в этой области и посвятил всю оставшуюся жизнь скромному изучению поведения растений.

Обрабатывая растения электрическими зарядами, Бос следовал традиции, которой было уже полтора века.

Первым, кто наэлектризовал растение с помощью машины для получения электричества путем трения, был доктор Мейнбрей из Эдинбурга, который в течение октября 1746 г. держал два миртовых дерева подключенными к машине; деревья отрастили новые побеги и почки осенью, словно на дворе была весна. В октябре следующего года аббат Нолле, узнав об этом, провел в Париже первый из серии более тщательных экспериментов. Нолле наэлектризовывал не только монахов-картезианцев и солдат французской гвардии, но и семена горчицы, прораставшие в жестяных мисках в его лаборатории. Наэлектризованные ростки выросли в четыре раза выше обычных, но их стебли были слабее и тоньше[101].

В декабре, незадолго до Рождества, Жан Жаллабер наэлектризовал луковицы жонкиля, гиацинта и нарцисса в графинах с водой[102]. В следующем году Георг Бозе наэлектризовал растения в Виттенберге[103], а аббат Менон – в Анже[104], и вплоть до конца XVIII в. демонстрация роста растений была весьма модной среди ученых, изучавших статическое электричество. Наэлектризованные растения раньше прорастали, росли быстрее и выше, раньше расцветали, давали больше листьев и обычно – но не всегда – были крепче.

Жан-Поль Марат даже наблюдал, как наэлектризованные семена салата прорастали в декабре, когда температура на улице была всего на два градуса выше нуля[105].

Джамбаттиста Беккариа из Турина в 1775 г. первым предложил воспользоваться этим эффектом в сельском хозяйстве. Вскоре после него Франческо Гардини, тоже из Турина, наткнулся на противоположный эффект: растения, лишенные естественного атмосферного флюида, росли не так хорошо. Над землей протянули сетку из железной проволоки, чтобы измерить электричество в атмосфере. Но эта сетка частично проходила по монастырскому саду, закрыв его от измеряемых атмосферных электрических полей. Сетка стояла в течение трех лет; все это время садовники, ухаживавшие за этой частью сада, жаловались, что урожаи фруктов и семян на 50–70 % ниже, чем в остальном саду. Когда сетку убрали, урожайность восстановилась. Гардини сделал из этого интереснейший вывод. «Высокие растения, – писал он, – вредят развитию растений, которые растут у их корней, не только потому, что лишают их света и тепла, но и потому, что впитывают атмосферное электричество вместо них»[106].

В 1844 г. У. Росс стал первым из многих, кто использовал электричество на поле с культурными растениями – для этого он применил одновольтовую батерейку, во многом похожую на ту, с помощью которой Гумбольдт с таким успехом вызывал у себя ощущения света и вкуса, только больше размером. Он закопал медную пластинку размером пять футов на четырнадцать дюймов (примерно 150×35 см) с одного конца картофельной грядки, цинковую пластинку в двухстах футах от нее – с другого конца и соединил пластинки проводом. В июле с электрифицированной грядки он собрал картофелины диаметром в среднем два с половиной дюйма, а с обычной, не обработанной электричеством, – лишь в полдюйма[107].

В 1880-х гг. профессор Селим Лемстрём из Гельсингфорсского университета в Финляндии провел масштабные эксперименты на культурных растениях с помощью машины для получения электричества путем трения, повесив над растениями сетку из проводов, соединенных с положительным полюсом машины. За несколько лет экспериментов он убедился, что электричество стимулирует рост некоторых растений – пшеницы, ржи, ячменя, овса, свеклы, пастернака, картофеля, сельдерея, фасоли, лука-порея, малины и клубники, – но при этом замедляет рост гороха, моркови, кольраби, брюквы, репы, капусты и табака.

А в 1890 г. брат Полен, директор Сельскохозяйственного института в Бове (Франция), изобрел устройство, которое назвал геомагнетифером, чтобы притягивать атмосферное электричество примерно таким же способом, как когда-то сделал Бенджамин Франклин с помощью воздушного змея. На столбе высотой 40–65 футов располагался железный стержень, расходившийся на пять заостренных отростков. На каждый гектар земли было установлено по четыре таких столба, и электричество, собранное ими, уходило в землю и распределялось по делянкам с помощью подземных проводов.

По сообщениям газет того времени, эффект оказался потрясающим даже визуально. Словно «суперкультуры», все кусты картофеля внутри четко очерченного кольца были зеленее, выше и «вдвое здоровее», чем окружающие их растения. Урожай картофеля в электрифицированных областях был на 50–70 % выше, чем вне их. Когда эксперимент повторили на винограднике, в виноградном соке оказалось на 17 % больше сахара, а вино, сделанное из него, было исключительно крепким. Дальнейшие испытания на полях шпината, сельдерея, редиса и репы были не менее впечатляющими. Другие фермеры, используя похожую аппаратуру, улучшили урожаи пшеницы, ржи, ячменя, овса и, как следствие, соломы[108].

 

Все эти эксперименты со статическим электричеством, слабыми электрическими батареями и атмосферными полями могут привести к мысли, что для воздействия на растения не нужен слишком уж сильный ток. Но вплоть до конца XIX в. экспериментам не хватало точности, а аккуратные измерения были недоступны.

И мы снова возвращаемся к Джагадишу Чандеру Босу.

В 1859 г. Эдуард Пфлюгер сформулировал простую модель воздействия электрического тока на нервы животных. Если два электрода присоединить к нерву, а потом внезапно подать ток, отрицательный электрод (катод) моментально стимулирует часть нерва, расположенную неподалеку от него, а положительный электрод (анод) оказывает притупляющий эффект. Как только ток прекращается, происходит прямо противоположное. Катод, заявил Пфлюгер, повышает возбудимость при подаче тока и снижает ее при прекращении, а анод – наоборот. Пока ток течет и не меняется, он якобы вообще не влияет на нервную активность. В закон Пфлюгера, сформулированный полтора столетия назад, очень многие верят и до сих пор – и именно на нем основаны современные правила электробезопасности, которые защищают от удара током при замыкании или размыкании тока, но ничего не делают со слабыми токами, которые постоянно протекают через тело: считается, что они не оказывают никакого воздействия.

К сожалению, закон Пфлюгера неверен, и первым его опроверг именно Бос. Одна из проблем закона Пфлюгера состоит в том, что он основан на экспериментах со сравнительно сильными электрическими токами, порядка одного миллиампера (тысячной части ампера). Но, как продемонстрировал Бос, он неверен даже при таких токах[109]. Экспериментируя на себе, точно так же, как и Гумбольдт век назад, Бос приложил электродвижущую силу в 2 вольта к ране на коже, и, к его удивлению, катод и при замыкании цепи, и все то время, что ток продолжал идти, значительно усиливал боль. Анод и при замыкании цепи, и все время подачи тока ослаблял ее. Но вот при более низком напряжении (1/3 вольта) случилось прямо противоположное: катод ослаблял боль, а анод усугублял ее.

После эксперимента на своем теле Бос, будучи ботаником, решил провести подобный опыт на растении. Он взял двадцатисантиметровый кусок нерва папоротника и приложил к его концам электродвижущую силу всего в одну десятую вольта. По нерву прошел ток примерно в три десятимиллионных ампера – примерно в тысячу раз меньше, чем диапазон токов, о которых вообще хотя бы задумывается большинство современных физиологов и разработчиков правил безопасности. Опять-таки, даже при таком слабом токе Бос обнаружил явление, полностью противоположное закону Пфлюгера: анод стимулировал нерв, а катод делал его менее чувствительным. Очевидно, электричество в зависимости от силы тока может оказывать прямо противоположное действие и на растения, и на животных.

Бос по-прежнему остался недоволен: в определенных обстоятельствах эффекты не укладывались ни в одну, ни в другую закономерность. Может быть, предположил Бос, модель Пфлюгера не просто неверна, но еще и слишком упрощена? Он выдвинул гипотезу, что ток меняет не только порог реакции нерва, но и его электропроводность. Бос поставил под сомнение общепринятую истину, что работа нервов – это простая реакция «работает или не работает», основанная только на химикатах в водном растворе.

Последующие эксперименты великолепным образом подтвердили его подозрения. Вопреки существующим теориям работы нервов – существующим даже сейчас, в XXI в., – постоянно подаваемый ток, даже самый малый, значительно меняет проводимость нервов животных и растений, которые тестировал Бос. Если ток протекал в том же направлении, что и нервные импульсы, то скорость импульсов замедлялась, и у животных ослабевала мышечная реакция на стимулирование. Если же ток протекал в противоположном направлении, то нервные импульсы передавались быстрее, и мышцы реагировали энергичнее. Манипулируя силой и направлением тока, Бос обнаружил, что может управлять проводимостью нервов растений и животных, как ему заблагорассудится: делать нервы более или менее чувствительными к стимуляции или даже полностью блокируя проводимость. А после отключения тока наблюдался эффект отскока. Если ток уменьшал проводимость, то нерв становился сверхчувствительным и оставался таковым еще какое-то время. В одном эксперименте краткая подача тока в 3 микроампера – 3 миллионных доли ампера – сделала нерв сверхчувствительным на 40 секунд.

Невероятно малый ток: для растений – один микроампер, для животных – треть микроампера, – оказался достаточным, чтобы замедлить или ускорить нервные импульсы примерно на 20 %[110]. Примерно такой ток проходит по вашей ладони, если вы касаетесь обоих концов одновольтовой батарейки, или по вашему телу, если вы спите под электроодеялом. Этот ток намного меньше, чем тот, что индуцируется в вашей голове, когда вы говорите по мобильному телефону. И, как мы увидим ниже, для влияния на рост достаточно даже еще более малого тока, чем для воздействия на активность нервов.

В 1923 г. Вернон Блэкмен, ученый-агроном из английского Имперского колледжа, обнаружил в полевых экспериментах, что электрический ток плотностью меньше одного миллиампера (тысячной части ампера) на акр (около 4000 м2) повышает урожайность нескольких культурных растений на 20 %. Ток, проходящий через каждое растение, по его подсчетам, составлял всего около 100 пикоампер – 100 триллионных частей ампера, примерно в тысячу раз меньше, чем токи, с помощью которых Бос стимулировал или притуплял нервы.

Но результаты в поле оказались противоречивыми. Так что Блэкмен решил провести эксперимент в лаборатории, где и контакт, и условия роста можно было точно контролировать. Он прорастил семена ячменя в стеклянных пробирках и на разных расстояниях над каждым растением разместил заостренные проводники, заряженные примерно на 10 000 вольт от источника постоянного тока. Ток, проходивший через каждое растение, был точно измерен гальванометром, и Блэкмен обнаружил, что максимальное увеличение роста достигается при токе в 50 пикоампер, который подается ежедневно в течение всего одного часа. Увеличение времени подачи тока ослабляло эффект. Увеличение силы тока до десятой части микроампера всегда было вредно.

В 1966 г. Лоренс Марр и его коллеги по Университету штата Пенсильвания, экспериментируя с кукурузой и фасолью, подтвердили данные Блэкмена, что ток силой около одного микроампера замедляет рост и повреждает листья. А затем они зашли еще на шаг дальше: решили узнать самый малый ток, который оказывает влияние на рост растений. И обнаружили, что любой ток больше, чем одна квадриллионная часть ампера, стимулирует рост растений.

В экспериментах с радио Бос использовал устройство, которое назвал магнитным крескографом – он записывал рост растений, увеличивая его в десять миллионов раз[111]. Не забывайте, Бос был экспертом и по беспроводным технологиям. Когда он поставил радиопередатчик в одном конце своего земельного участка, а к принимающей антенне, расположенной в другом конце, в двухстах метрах от передатчика, прикрепил растение, то обнаружил, что даже краткая радиопередача меняет скорость роста растения буквально за несколько секунд. Судя по описаниям опыта, частота радиоволн составляла около 30 МГц. Мощность нам неизвестна. Однако Бос записал, что «слабый стимул» тут же вызвал ускорение роста, а «умеренная» энергия радиопередачи замедляла рост. В других экспериментах он доказал, что воздействие радиоволн замедляет подъем сока[112].

Вывод, сделанный Босом в 1927 г., оказался поразительным и пророческим. «Диапазон восприятия растений, – писал он, – невообразимо шире, чем наш; они не только воспринимают, но и реагируют на различные лучи обширного эфирного спектра. Возможно, даже и хорошо, что наши чувства в этом плане ограничены. Ибо в противном случае жизнь была бы невыносима из-за постоянного раздражения от бесконечных волн космических сигналов, для которых кирпичные стены совершенно прозрачны. Нашей единственной защитой были бы герметично запечатанные металлические комнаты»[113].

7. Острая электрическая болезнь

Десятого марта 1876 г. восемь знаменитых слов положили начало еще более огромной лавине проводов, скатившейся на и без того уже опутанный мир: «Мистер Уотсон, идите сюда, я хочу вас видеть».

Словно обитатели пустыни, которая только и ждала, чтобы ее засадили и полили, миллионы людей услышали этот зов и прислушались к нему. Ибо, хотя в 1879 г. в Нью-Йорке телефонами владели лишь 250 человек, всего через десять лет из той же самой почвы, удобренной идеями, появились густые леса телефонных столбов высотой в восемьдесят и девяносто футов (27–29 м), на каждом из которых было закреплено до тридцати перекладин. Каждое «дерево» в этих электрических зарослях держало на себе до трехсот проводов, закрывая солнце и погружая улицы в темноту.

Примерно в то же время появилось и электрическое освещение. Через 126 лет после того, как несколько голландских первопроходцев научили восторженных учеников запасать электрический флюид в стеклянных банках, бельгиец Зеноб Грамм даровал потомкам этих первопроходцев знание, как, так сказать, снять с этой банки крышку. Он изобрел современную динамо-машину, которая могла вырабатывать электричество практически в неограниченных масштабах. К 1875 г. ослепительные дуговые лампы уже освещали общественные места Парижа и Берлина. К 1883 г. провода под напряжением 2000 вольт опутали крыши жилых домов в лондонском Вест-Энде. Тем временем Томас Эдисон изобрел более маленькую и мягко светящуюся лампу – современную лампу накаливания, более подходящую для спален и кухонь, и в 1881 г. открыл на Перл-стрит в Нью-Йорке первую из сотен электростанций, вырабатывавших постоянный ток для абонентов. Толстые провода от электростанций вскоре присоединились к своим тонким собратьям, натянутые между высокими ветвями все растущих электрических рощ, закрывших солнце на улицах по всей Америке.


Запутанные электрические кабели


А затем рядом с ними появилось еще одно изобретение – переменный ток. Хотя многие, в том числе Эдисон, хотели избавиться от непрошеного гостя и вырвать его с корнем, как слишком опасного, к их предупреждениям не прислушались. К 1885 г. венгерское трио – Карой Циперновский, Отто Блати и Макс Дери – изобрело полную систему генерации и передачи переменного тока, и они начали устанавливать ее в Европе.

 

Угол Калверт-стрит и Джерман-стрит, Балтимор, штат Мэриленд, ок. 1889. Из книги E. B. Meyer, Underground Transmission and Distribution, McGraw-Hill, N.Y., 1916


В США на системы переменного тока весной 1887 г. перешел Джордж Вестингауз, и началась «война токов»: Вестингауз сражался с Эдисоном за будущее нашего мира. Одним из последних залпов этой скоротечной войны стал следующий вызов, опубликованный на 16-й странице журнала Scientific American за 12 января 1889 г.:


Сторонники постоянного и переменного тока активно нападают друг на друга, ссылаясь на сравнительную вредность двух систем. Один инженер предложил своеобразную электрическую дуэль, чтобы разрешить этот диспут. Он хочет пропустить через себя постоянный ток, а сопернику предлагает переменный. Оба получат одинаковое напряжение, которое будет постепенно увеличиваться, пока один из участников добровольно не сдастся.


Штат Нью-Йорк разрешил вопрос другим способом: он стал применять электрический стул как новый способ казни преступников. Да, хотя переменный ток опаснее, он выиграл дуэль, которую даже тогда вели не отдельные бойцы, а коммерческие компании. Поставщикам электричества на большие расстояния нужно было найти экономичный способ доставить по обычным проводам в 10 000 раз больше энергии, чем было необходимо ранее. Постоянный ток из-за уровня технологий того времени не выдержал конкуренции с переменным.

После этого электрическая технология, тщательно высаженная, удобренная, политая и вскормленная, начала бурно расти – к небу и за горизонт. Последним необходимым ингредиентом стал запатентованный Николой Теслой в 1888 г. многофазный генератор переменного тока, который позволил промышленникам использовать переменный ток не только для освещения, но и для получения энергии. В 1889 г. мир внезапно оказался электрифицирован до такой степени, какую и не могли себе представить во времена, когда доктор Джордж Бирд впервые диагностировал неврастению. Телеграф, как тогда говорили, «уничтожил пространство и время». Но прошло всего двадцать лет, и телеграф выглядел уже детской забавой по сравнению с электромотором, а по сельской местности вот-вот должны были пойти электрические локомотивы.

В начале 1888 г. электрифицированных железных дорог в США было всего тринадцать общей длиной сорок восемь миль; примерно столько же их было и во всей Европе. Рост железнодорожной промышленности был настолько потрясающим, что к концу 1889 г. в одних только Соединенных Штатах электрифицировали почти 1000 миль железных дорог. Через год это число возросло еще втрое.

1889-й – это год, когда рукотворные электрические возмущения атмосферы Земли приняли глобальный, а не локальный характер. В тот год была основана Edison General Electric Company, а Westinghouse Electric Company преобразована в Westinghouse Electric and Manufacturing Company. В тот год Вестингауз выкупил патенты Теслы на устройства переменного тока и установил эти устройства на своих электростанциях; всего за год, с 1889 по 1890-й, их число возросло со 150 до 301. В Великобритании поправка к Закону об электрическом освещении, принятая в 1888 г., ослабила регулирование электроэнергетической промышленности, и строительство централизованных электростанций впервые стало коммерчески выгодным. В том же 1889 г. Общество телеграфных инженеров и электриков сменило название на более подходящее: Институт инженеров-электриков. В 1889 г. лампы накаливания выпускались 61 производителем из 10 стран, а американские и европейские компании начали строить электростанции в Центральной и Южной Америке. В том же году журнал Scientific American сообщил: «Насколько нам известно, все большие города Соединенных Штатов обеспечены дуговым освещением и лампами накаливания, и внедрение электрического освещения сейчас идет и в малых городах»[114]. Еще в том же году Чарльз Дейна в журнале Medical Record сообщил о новом классе травм, которые ранее получали только после удара молнии. Они вызывались, писал он, «невероятным распространением практического применения электричества – в одно только освещение и энергетику вложено почти 100 000 000 долларов». Большинство историков согласны, что именно 1889 г. – начало современной электрической эпохи.

А еще в 1889 г. словно разверзлись хляби небесные: врачи обеих Америк, Европы, Азии, Африки и Австралии приняли целый поток тяжелобольных пациентов, страдающих от странной болезни, которая появилась как гром среди ясного неба, – болезни, которую многие из этих врачей никогда раньше не видели. Этой болезнью была инфлюэнца (грипп). Пандемия продлилась целых четыре года и убила не менее миллиона человек.


Грипп – это электрическая болезнь

Внезапным, необъяснимым образом инфлюэнца, описания которой не менялись много столетий, изменила свой характер в 1889 г. В последний раз грипп охватил бо́льшую часть Англии в ноябре 1847 г., более полувека назад. Последняя эпидемия гриппа в США свирепствовала зимой 1874–1875 гг. С древних времен грипп был известен как капризное, непредсказуемое заболевание: он появлялся из ниоткуда, словно дикий зверь, без предупреждения и графика терроризировал население целых стран, а потом исчезал на годы и десятилетия так же внезапно и загадочно, как и появлялся. Он вел себя совсем не так, как любая другая болезнь, считался не заразным, а имя «инфлюэнца» получил потому, что его появление и исчезновение, как считалось, регулируется «влиянием» (по-итальянски influenza) звезд.


Смертность от гриппа на миллион жителей в Англии и Уэльсе, 1850–1940[115]. По оси Y: Смерти (на миллион жителей)


Но в 1889 г. грипп удалось укротить. С того года он присутствовал всегда и во всех уголках мира. Он, как и раньше, таинственно исчезал, но теперь можно было быть точно уверенным в том, что он вернется примерно в то же самое время на следующий год. С тех пор он больше не уходил надолго.

Как и «тревожное расстройство», грипп настолько распространен и знаком всем, что для того, чтобы снять с этого незнакомца маску и раскрыть истинные масштабы катастрофы в области общественного здравоохранения, случившейся 130 лет назад, необходимо тщательно изучить его историю. Дело не в том, что мы недостаточно знаем о вирусе гриппа. Об этом мы как раз знаем более чем достаточно. Микроскопический вирус, ассоциирующийся с этой болезнью, изучен столь тщательно, что ученые знают о его крохотном цикле жизни больше, чем о любом другом микроорганизме. Но это стало удобным поводом игнорировать многие необычные факты об этой болезни, в том числе и то, что она не заразна.

В 2001 г. канадский астроном Кен Тэппинг и два врача из Британской Колумбии в очередной раз подтвердили, что по крайней мере в три последних столетия пандемии гриппа чаще всего происходили во время пиков магнитной активности Солнца, то есть на пике каждого 11-летнего солнечного цикла.

Подобная тенденция – не единственный аспект этой болезни, давно ставящий вирусологов в тупик. В 1992 г. один из ведущих авторитетов в эпидемиологии гриппа Роберт Эдгар Хоуп-Симпсон опубликовал книгу, в которой рассмотрел самые широко известные факты и указал, что они не сходятся с моделью передачи инфекции от человека к человеку[116]. Грипп уже давно изумлял Хоуп-Симпсона – собственно говоря, с тех пор, как он впервые начал лечить жертв болезни, работая терапевтом в Дорсете во время эпидемии 1932–1933 гг. – той самой эпидемии, когда впервые был изолирован вирус, ассоциирующийся с этой болезнью у людей. Но за всю 71-летнюю карьеру Хоуп-Симпсона его вопросы так и остались без ответа. «Внезапный взрывной рост информации о природе вируса и его антигенных реакциях в человеке-носителе», – писал он в 1992 г., лишь «добавил вопросов, требующих объяснения»[117].

Почему грипп – сезонная болезнь, спрашивал он? Почему гриппом практически никто не болеет вне тех нескольких недель или месяцев, что идет эпидемия? Почему эпидемии гриппа заканчиваются? Почему эпидемии, случающиеся не в сезон, не распространяются? Как эпидемии распространяются, подобно взрыву, по целым странам, а потом таким же чудесным образом исчезают, словно их кто-то запретил? Он не мог понять, как вирус может так себя вести. Почему грипп так часто поражает молодых взрослых, щадя детей и стариков? Как могли эпидемии гриппа в прошлых веках распространяться с такой же оглушительной быстротой, как и сейчас? Как вирус проворачивает свой «трюк с исчезновением»? (Здесь имеется в виду тот факт, что при появлении нового штамма вируса старый штамм в следующем сезоне полностью исчезает по всему миру.) Хоуп-Симпсон перечислил 21 факт о гриппе, которые вызывали у него недоумение и казались необъяснимыми, если предположить, что вирус передается от человека к человеку при прямом контакте.

Наконец, он возродил теорию, впервые выдвинутую Ричардом Шопом, ученым, который первым изолировал вирус гриппа у свиней в 1931 г. и который тоже не верил, что взрывная природа многих вспышек болезни объясняется прямым заражением. Шоп, а за ним и Хоуп-Симпсон предположили, что грипп на самом деле не передается от человека к человеку или от свиньи к свинье обычным способом: вирус гриппа остается в латентном состоянии в организме носителя (человека или свиньи), которые в большом количестве распространены в своих сообществах, а затем реактивируется тем или иным природным триггером. Далее Хоуп-Симпсон предположил, что этот триггер связан с сезонными перепадами солнечной активности и может быть электромагнитным по своей природе, – точно такие же предположения выдвигали и многие его предшественники в течение предыдущих двух столетий.

Когда Хоуп-Симпсон был молод и только начинал практиковать в Дорсете, датский врач Иоганнес Мюгге, уже завершавший свою долгую и славную карьеру, опубликовал монографию, где тоже показал, что пандемии гриппа чаще всего случаются в годы максимальной солнечной активности, а ежегодное количество случаев гриппа в Дании повышается и снижается в зависимости от количества солнечных пятен. В эпоху, когда эпидемиологию свели практически исключительно к поиску микробов, Мюгге признал – да и знал уже на своем горьком опыте, – что «тому, кто танцует не в ногу со всеми, скорее всего, отдавят ноги»[118]. Но он был уверен, что грипп как-то связан с электричеством, и пришел к этому выводу точно так же, как и я: благодаря личному опыту.

В 1904 и 1905 гг. Мюгге в течение девяти месяцев вел тщательный дневник состояния здоровья, а позже сравнил его с графиком электрического потенциала атмосферы, данные для которого собирал три раза в день в течение десяти лет в рамках другого проекта. Оказалось, что его тяжелые, похожие на мигрень головные боли, которые, как он точно знал, связаны с переменой погоды, почти всегда выпадали на день внезапного повышения или снижения напряжения в атмосфере или на день перед ним.

Но головная боль была не единственным побочным эффектом. В дни подобных электрических бурь он практически всегда плохо спал, не высыпался, страдал от головокружения, раздражительности, смятения, ощущения жужжания в голове, давления в груди и нерегулярного сердцебиения; иногда, писал он, «мое состояние напоминало предгриппозное, и во всех случаях по сути ничем не отличалось от начала реального заболевания гриппом»[119].

Были и другие, кто связывали грипп с солнечными пятнами или атмосферным электричеством: Джон Юнг (2006), Фред Хойл (1990), Даглас Уэбстер (1940), Александр Чижевский (1936), Коньерс Моррелл (1936), У. М. Хьюэтсон (1936), сэр Уильям Хамер (1936), Гуннар Эдстрём (1935), Клиффорд Гилл (1928), К. М. Рихтер (1921), Вилли Хельпах (1911), Уэйр Митчелл (1893), Чарльз Дейна (1890), Луиза Фиск Брайсон (1890), Людвиг Бузорини (1841), Иоганн Шёнлейн (1841) и Ноа Уэбстер (1799). В 1836 г. Генрих Швейх заметил, что все физиологические процессы сопровождаются выработкой электричества, и предположил, что электрические возмущения в атмосфере мешают телу избавиться от накопленного заряда. Он повторил распространенное тогда предположение, что накопление электричества в организме вызывает симптомы гриппа[120]. Это утверждение пока что никто не опроверг.

Интересно отметить, что в 1645–1715 гг., в период, который астрономы называют «минимумом Маундера», когда Солнце было настолько малоактивным, что на нем почти не наблюдали пятен, а в полярные ночи не было северного сияния – по рассказам канадских индейцев, «небесные огни покинули людей»[121], – не было и всемирных эпидемий гриппа. В 1715 г., после отсутствия в течение целого поколения, солнечные пятна вдруг снова вернулись. В 1716 г. знаменитый английский астроном сэр Эдмунд Галлей, которому тогда было шестьдесят лет, драматично описал северное сияние – он увидел его впервые в жизни. Но Солнце еще не было полностью активным. Словно проснувшись после долгого сна, оно вытянуло ноги, зевнуло и снова прилегло вздремнуть, показав лишь половину из того количества пятен, что сейчас появляются на пике каждого одиннадцатилетнего солнечного цикла. Лишь в 1727 г. количество солнечных пятен впервые за век превысило сто. А в 1728 г. по миру пошли волны гриппа – случилась первая за почти сто пятьдесят лет пандемия. Куда более распространенная и стойкая, чем когда-либо раньше в известной истории, пандемия проникла на все континенты, стала еще более жестокой к 1732 г. и, по некоторым сообщениям, продержалась вплоть до 1738 г., пика следующего солнечного цикла[122]. Джон Гексам, врач из английского Плимута, в 1733 г. писал, что «избежать [болезни] не удалось почти никому». Он добавил, что это сопровождалось «безумием среди собак; лошадей катар поражал даже быстрее, чем людей; а один джентльмен сообщил мне, что некоторые птицы, особенно воробьи, покинули то место, где он жил во время болезни»[123]. Очевидец из Эдинбурга сообщал, что некоторые люди страдали от лихорадки по шестьдесят дней подряд, а другие, которые вообще не были больны, «внезапно умирали»[124]. По некоторым оценкам, эта пандемия унесла жизни около двух миллионов человек[125].

101Nollet 1753, pp. 356-61.
102Jallabert 1749, pp. 91–92.
103Bose 1747, p. 20.
104Bertholon 1783, p. 154.
105Marat 1782, pp. 359-60.
106Quotation in Hull 1898, pp. 4–5.
107Stone 1911, p. 30.
108Paulin 1890; Crépeaux 1892; Hull 1898, pp. 9-10.
109Bose 19°7, pp. 578-86, “Inadequacy of Pflüger’s Law.”
110Bose 1915.
111Bose 1919, pp. 416-24, “Response of Plants to Wireless Stimulation.”
112Bose 1923, pp. 1°6-7.
113Bose 1927, p. 94.
114Scientific American 1889d.
115Stuart-Harris 1965, fig. 54, p. 87.
116В статье, которая, судя по всему, легла в основу книги, Хоуп-Симпсон не утверждал, что грипп не заразен. Он писал, что развитие эпидемий гриппа невозможно объяснить только постоянной передачей вируса от человека к человеку, и предполагал, что есть некие дополнительные факторы. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2134066/ – Прим. перев.
117Hope-Simpson 1992, p. 59.
118Mygge 1930, p. 10.
119Mygge 1919, p. 1255.
120Нужно заметить, что симптомы гриппа неспецифичны и похожая симптоматика может встречаться при другой патологии. – Прим. науч. ред.
121Hogan 1995, p. 122.
122Here is a sampling of opinion as to the time span of this pandemic: 1727-34 (Gordon 1884); 1729-38 (Taubenberger 2009); 1729-33 (Vaughan 1921; van Tam and Sellwood 2°10). Some authors divide it into two separate pandemic periods: 1725-30 and 1732-33 (Harries 1892); 1727-29 and 173233 (Creighton 1894); 1728-30 and 1732-33 (Arbuthnot 1751 and Thompson 1852); 1729-30 and 1731-35 (Schweich 1836); 1729-30 and 1732-37 (Bosser 1894, Leledy 1894, and Ozanam 1835); 1729-30 and 1732-33 (Webster 1799; Hirsch 1883; Beveridge 1978; Patterson 1986).
123Thompson 1852, pp. 28–38.
124Ibid., p. 43.
125Marian and Mihâescu 2009.
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38 
Рейтинг@Mail.ru