bannerbannerbanner
полная версияПопулярно о конечной математике и ее интересных применениях в квантовой теории

Феликс Лев
Популярно о конечной математике и ее интересных применениях в квантовой теории

Стандартная догма такая, что гравитация – это четвертое взаимодействие, которое надо объединить с сильным, электромагнитным и слабым. Сильное взаимодействие – обмен виртуальными глюонами, электромагнитное – обмен виртуальными фотонами, слабые – обмен виртуальными W и Z бозонами, а гравитация – обмен виртуальными гравитонами. Но тогда непонятно вот что. Никакие реальные частицы, в том числе и гравитоны не могут выйти из радиуса Шварцшильда. Но на расстояниях много больше радиуса Шварцшильда гравитационное поле черной дыры такое же как у обычной звезды с такими же массой и спином. Значит виртуальные гравитоны без проблем уходят из радиуса Шварцшильда на очень большие расстояния. Разница между реальными и виртуальными гравитонами только в том, что у реальных квадрат 4-импульса равен квадрату массы гравитона, а для виртуальных он может быть любой. Но может быть и очень близким к квадрату массы гравитона (и иметь большое время жизни). Так что непонятно.

Итак, получается, что три солнечные массы какого-то непонятного вещества проаннигилировали и вся энергия аннигиляции ушла только в гравитационные волны. Никаких фотонов и других частиц нет. Ведь даже, скажем, нейтрон, хотя он электрически нейтральный, но имеет магнитный момент и, якобы, состоит из заряженных кварков. Поэтому при таких ускорениях он будет излучать фотоны. Т. к. есть только две установки LIGO, то они не могут определить откуда пришел сигнал. Говорят, что когда построят третью в Индии, то по трем точкам определят. Но Ферми гамма-телескоп одновременно видит 70 % неба. После этого сообщения LIGO люди из Ферми написали статью, что 14 сентября был какой-то слабый сигнал через 0.4 секунды после LIGO. Но при таком грандиозном событии слабый сигнал выглядит странно. Кроме того, 0.4 секунды эквивалентно 120000 км., а телескоп находится на орбите высотой 500 км., т.е., не согласуется.

Мы знаем энерговыделение Солнца и оно от нас на расстоянии 8 световых минут. А это событие (якобы) было на расстоянии миллиард световых лет. Поэтому легко оценить, что за эти 0.2 секунды к нам пришло энергии в 1000000 раз меньше чем от Солнца. Если для оценки взять, что энерговыделение Сириуса в 10 раз больше чем у Солнца, то к нам пришло энергии в 100000 раз больше чем от Сириуса. Но никто ничего не видел и никаких следов. А даже если бы все действительно ушло только в гравитационное волны, то, что, такое сверхграндиозное событие ни на что бы не повлияло?

Я спрашивал у физиков, верят ли они в то, что такое могло произойти. Ответ зависел от того как отвечающий относился к ОТО. Сторонники ОТО верят, что почти вся энергия действительно ушла в гравитационные волны, а другие сомневаются. Но т.к. это нельзя ни доказать ни опровергнуть, то любая точка зрения имеет право на существование.

Ну и, наконец, такое замечание. Допустим даже что такое объяснение эксперимента правильное. Значит следующее событие можно будет зарегистрировать только если оно по масштабам такое же грандиозное как и то, что (якобы) было. Сколько времени ждать этого события? Никто точно не знает. На LIGO уже потратили около миллиарда долларов и будет потрачено еще больше. А если оно не произойдет?

Но уже объявили о втором событии, которое произошло 26 декабря 2015 г. и тоже на расстоянии от нас примерно 1 миллиард световых лет. Здесь масштаб несколько бледнее: массы черных дыр примерно 14.2 и 7.5 масс Солнца, и за одну секунду в энергию гравитационных волн ушла «всего» одна масса Солнца. Ну и, конечно, опять все ушло только в гравитационные волны и никто ничего не увидел. И опять-таки, хотя модель зависит от (непонятного числа) подгоночных параметров, тоже объявлено, что из всех теорий гравитации лучше всего событие описывается в рамках ОТО. Это естественно т. к. подгоночные параметры выбираются, исходя из ОТО. Так что, скорее всего, вырисовывается такой сценарий, что время от времени LIGO будет объявлять об очередном обнаружении гравитационных волн.

Пока что этот сценарий подтверждается и в 2017 г. LIGO получила Нобелевскую премию а эти эксперименты. Наверное, с технической точки зрения эти эксперименты действительно очень сложные. Но, вроде бы, Нобелевскую премию по физике должны давать не за техническую сложность, а за фундаментальные открытия. Обычная практика была такая, что после объявления о фундаментальных открытиях ждали много лет когда открытие будет общепризнанным. А здесь ждали чуть больше года, хотя вера в то, что это фундаментальное открытие далеко не всеобщее.

Думаю, что эта история с Нобелевской премией за эксперименты, в которых много неопределенностей и неясностей – один из показателей сегодняшнего состояния науки, когда признается не то что явно является фундаментально новым (т.е., имеющим большое значение для развития науки), а то, что поддерживает establishment, получающий за это позиции, гранты и т.д.

9.3. О проблеме темной энергии

Проблема темной энергии возникает, если в ОТО сделать дополнительное предположение, что Λ=0. Об «обосновании» этого предположения я писал в предыдущем разделе. Если исходить из стандартного подхода ОТО, что лагранжиан линеен по скалярной кривизне, то получаемые уравнения Эйнштейна зависят от двух произвольных констант: гравитационной константы G и космологической константы Λ. В рамках ОТО эти константы нельзя вычислить, они имеют статус феноменологических констант, которые должны быть выбраны из условия наилучшего описания эксперимента. Наличие члена с Λ приводит к так называемой космологической силе, которая, в отличие от гравитационной, прямо пропорциональна расстоянию. Если формально положить Λ=0, то в нерелятивистском приближении и в линейном приближении по G уравнения Эйнштейна дают закон всемирного тяготения Ньютона, который хорошо описывает наблюдаемые данные в Солнечной системе. Поэтому естественно думать, что величина Λ достаточно мала так что в рамках Солнечной системы космологическая сила тоже мала. Однако, нельзя исключить, что на намного больших расстояниях эта сила не мала. С чисто математической точки зрения, если решение зависит от двух произвольных констант, то нет причин считать, что одна из них равна нулю. Некоторые авторы задают вопрос, что раз мы принимаем теорию с одной произвольной константой G, то почему мы не можем принять теорию с двумя произвольными константами – G и Λ.

Однако, здесь вступает в игру общепринятая философия ОТО, согласно которой кривизна пространства создается материей. Поэтому в отсутствие материи пустое пространство должно быть плоским и поэтому Λ должна быть равной нулю. Этот вопрос был предметом спора между Эйнштейном и де Ситтером, который рассматривал сценарии развития Вселенной в предположении, что Λ не равна нулю и ввел пространства, которые теперь называют пространствами де Ситтера. Хорошо известный исторический факт, что вначале Эйнштейн написал свои уравнения без Λ, но тогда, как следует из решения Фридмана, Вселенная нестационарная. Думая, что она должна быть стационарной, Эйнштейн ввел Λ. Но когда Hubble обнаружил, что галактики разбегаются, то Эйнштейн сказал, что введение Λ было самой большой ошибкой его жизни.

Общепринятая философия ОТО принимается почти во всех учебниках по ОТО, написанных до 1998 года. Например, Ландау и Лифшиц пишут в "Теории Поля": "Введение в плотность лагранжевой функции постоянного члена, вообще не зависящего от состояния поля, означало бы приписывание пространству-времени неустранимой кривизны, не связанной ни с материей ни с гравитационными волнами". Однако, в 1998 году были получены данные, которые интерпретируются так, что Λ не равна нулю. В результате дальнейших наблюдений был сделан вывод, что Λ положительна и определяется с точностью лучшей чем 1 %. Этот результат поставил перед специалистами по ОТО проблему выбора:

1) Признать неправильными предыдущие утверждения о том, что только Λ=0 является физическим выбором (и, в частности, признать, что утверждение Эйнштейна о том, что введение Λ было самой большой ошибкой его жизни тоже ошибочно.

2) Попытаться объяснить данные, исходя из предыдущих догм, что только Λ=0 допустимо.

Ввиду сказанного выше и даже исходя из человеческой психологии, можно не удивляться тому, что выбор был сделан в пользу 2). Было предложено такое «объяснение». Член с Λ в уравнениях Эйнштейна перенесли из левой части (описывающую кривизну пространства) в правую (описывающую материю) и объявили, что этот член описывают некую невидимую материю, которую назвали dark energy. Тогда, исходя из наблюдаемых данных, получается, что dark energy содержит около 70 % всей энергии Вселенной. После этого появляется большое поле деятельности для исследований разных моделей dark energy, проводятся конференции, даются гранты, готовятся эксперименты по будущему обнаружению и и даже даются Нобелевские премии.

В физике общепринято, что когда появляются новые экспериментальные данные, то вначале надо пытаться объяснить их, исходя из существующих теорий, и только когда стало ясно, что это не удается, то можно искать экзотические объяснения. Но в этой истории с dark energy ситуация была (и остается) полностью противоположной: абсолютное большинство establishment'а сразу поддержало dark energy, quintessence и другую экзотику, а попыток объяснить данные в рамках известных неэкзотических теорий почти не было. И самое печальное даже не в этом, а в том, что в литературе никакие другие мнения не допускаются. Как я отметил выше, одна из причин такой ситуации понятна – раз Эйнштейн сказал, что пустое пространство должно быть плоским, то отклонения от этого не допускаются (а на то что пустое пространство – физическая бессмыслица можно не обращать внимание). Ну а другая причина – что такая экзотика открывает большое поле деятельности для новых экспериментов, грантов и т.д.

По аналогии с Нобелевской премией 1993-го года, Нобелевскую премию в 2011м году формально дали с формулировкой, что за экспериментальные исследования, но все понимают, что неявно ее дали за то, что данные трактуются как открытие dark energy. А в 2019 году Нобелевскую премию дали J. Peebles. Как говорили члены Нобелевского комитета, он раскрыл нам глаза, что мы знаем только 5 % вещества во вселенной потому что примерно 70 % – dark energy, а 25 % – dark matter.

 

Как показано в моих работах, космологическое расширение ясно объясняется, исходя из общеизвестных теоретических результатов, без привлечения каких-либо предположений и/или моделей (например, dark energy или quintessence), которые однозначно не подтверждены. Поэтому, dark energy – это полная ахинея и, даже из принципов квантовой теории, следует, что Λ не должна быть равной нулю. Как подробно объяснено ниже, эти 70 % притянуты за уши, их просто нет. Некоторые мои работы, где dark energy не была главной темой, опубликовали даже в mainstream журналах (например, даже в Phys. Rev. D). Но когда я написал статьи, где рассматривается только проблема dark energy, то их удалось опубликовать только в тех журналах, которые не относятся к mainstream. Более подробно об этом – ниже.

Что же касается dark matter, то здесь вопрос более сложный. Понятие dark matter возникло из-за того, что поведение галактик не могут объяснить при помощи обычных понятий, и объяснение получается, если предположить, что в этих галактиках есть какое-то неизвестное вещество, которое и назвали dark matter.

Сейчас многие теоретики и экспериментаторы исследуют как можно найти частицы из dark matter. Это очень серьезная деятельность и, конечно, если dark matter найдут, то это будет фундаментальный прогресс в нашем понимании природы. С другой стороны, что происходит в галактиках – вопрос сложный и вряд ли мы здесь все понимаем. Так что посмотрим к чему придет наука.

Думаю, что обсуждение в разделах 9.2 и 9.4 показывает, что ОТО стало чуть ли не религией и тот кто в ОТО сомневается не имеет шансов попасть в mainstream community. И это несмотря на то, что ОТО – чисто классическая теория, предложенная 100 лет тому назад, когда о квантовой теории ничего не знали, а когда узнали, то Эйнштейн стал ее большим противником. В одном из своих писем Гайзенбергу Паули писал, что каждый раз когда Эйнштейн говорит о квантовой теории, то "it’s a disaster" (это перевод т. к. ясно, что Паули писал Гайзенбергу на немецком).

Один из моих друзей объясняет эту ситуацию так: дело не в том, что они сильно любят Эйнштейна, а в том, что для тех у кого нет своих идей ОТО дает возможность жить, т.к. можно бесконечно улучшать ОТО и ставить эксперименты по ее проверке.

Вспоминаю себя в молодости Я все время был среди тех для кого авторитет Эйнштейна был непререкаем. Ходил на семинары Гинзбурга и Зельдовича как раз в то время, когда Логунов с соавторами предложили свой альтернативный вариант теории гравитации. Они писали, что, как и классическая электродинамика, такая теория должна быть в духе Фарадея и Максвелла. На этих семинарах работы Логунова все время высмеивали. Как-то я посмотрел статью Логунова, где была такая фраза: "Эти два великих ученых (имеется в виду Эйнштейн и Гильберт) затянули многие поколения физиков в дебри римановой геометрии". Я подумал, что как это, что какой-то Логунов тянет на самого Эйнштейна. Но теперь я думаю, что такое мнение совсем не обязательно является крамолой. Лично мне философия Логунова не нравится, но эту фразу считаю абсолютно правильной.

9.4. Почему квантовая теория более реалистична чем классическая

Обычное объяснение необходимости квантовой теории такое, что некоторые эксперименты нельзя объяснить в рамках классической теории, а квантовая теория их объясняет. Но я думаю, что главное даже не это, а то, что квантовая теория более естественная чем классическая.

Философия классической теории такая. Мы исходим из стандартной непрерывной математики и неявно предполагаем, что все значки, которыми мы описываем физику (например, x, t, dx/dt и др.) относятся к физическим величинам, которые в принципе могут быть измерены с любой точностью. Существующая квантовая теория тоже далеко не идеальна, в ней есть проблема интерпретации и другие проблемы. Но, по крайней мере, квантовая теория пытается как-то ответить на вопрос, что является физической величиной и с какой точностью величина может быть измерена. В частности, только те величины являются физическими, которым соответствуют самосопряженные операторы. Однако, хотя квантовая теория существует уже почти сто лет, есть проблемы в ее преподавании, и многие из тех кто формально в квантовой теории, ее не понимают. Думаю, что ситуация хорошо характеризуется таким наблюдением Гелл-Манна. Он преподавал квантовую механику в Caltech и по его наблюдениям, в ее изучении есть три этапа:

1) Студент решает уравнения Шредингера, находит уровни энергии и чувствует себя хорошо. Этот этап длится примерно полгода.

2) Начинает думать какой смысл всего этого и мучается, что не может понять. Этот этап тоже длится примерно полгода.

3) В одно прекрасное утро он просыпается и удивляется зачем он мучился т.к. все ясно и никаких проблем нет. Объяснение такое, что он пытался понять квантовую теорию с точки зрения классической, а это невозможно. Но постепенно у него выработалось квантовое мышление.

Мне кажется, что это наблюдение относится не только к студентам, но и ко многим ученым, которые формально считаются квантовыми физиками. Когда читаю тысячи статей по квантовой теории, то впечатление такое, что у многих авторов даже второго этапа не было.

Один из примеров – современные теории большого взрыва (Big Bang). Здесь задача заключается в том, чтобы объяснить несколько параметров, характеризующих современную Вселенную. Для этого создаются модели, где не только много параметров, но и предполагается, что за инфляцию ответственно инфлатонное поле, частицы которого никто никогда не наблюдал. Тогда современное состояние Вселенной объясняется тем, что когда-то была инфляция, т.е., Вселенная очень быстро расширилась. Например, в одном из известных сценариев, который предложил знаменитый космолог Guth, размер Вселенной изменился с 10-26m до 1m и это произошло за 10-35s. Для описания этого сценария используется квантовая теория инфлатонного поля и ОТО. Т.е., считается, что хотя ОТО – чисто классическая теория, ее можно применять на расстояниях 10-26и временах 10-35s. Т. е. в духе классической физики, что когда мы пишем x=10-26или t=10-35s, то думаем, что эти выражения имеют смысл. Однако, понятия координат и времени возникли из классической физики. Это величины, которые могут быть измерены с точностью не лучше чем размер атома и 10-18s соответственно.

Считается, что наилучшая точность в измерении времени 10-15s получается при использовании перехода в атоме Цезия133, и есть утверждения, что точность может быть улучшена до 10-18s. В инфляционных моделях Вселенной считается, что инфляция происходила когда во Вселенной не было не только атомов, но и даже ядер, а тогда непонятно, имеет ли смысл время в таких ситуациях. В квантовой теории бессмысленно говорить, что "на самом деле" некоторая физическая величина существует, но не может быть измерена.

С точки зрения квантовой теории говорить о координатах 10-26и временах 10-35s бессмысленно т.к. неизвестно есть ли оператор координаты на таких масштабах и проблема времени – одна из фундаментальных нерешенных проблем квантовой теории. Более того, например, в копенгагенской интерпретации квантовой теории, измерение – это взаимодействие с классическим объектом, а на этом этапе Вселенной никаких классических объектов быть не может. Но в теории инфляционной Вселенной эти проблемы даже не обсуждаются.

Например, произносятся слова, что на инфляционной стадии вселенной важны квантовые эффекты. Но как их учесть, если квантовой теории при таких условиях нет? Например, А. Старобинский добавляет к классическому лагранжиану ОТО новый член, который он называет квантовой поправкой. Но то, что к классическому лагранжиану добавили какой-то член, не означает, что теория стала квантовой. Она осталась полностью классической т.к. в ней остались классические пространство и время и классический принцип наименьшего действия.

Другой пример – теория струн или M-теория, которая провозглашается как theory of everything. Здесь считается, что вся физика будет выведена из топологии гладких многообразий на планковских длинах 10-35m. Но в физике частиц расстояния не измеряются непосредственно. Когда говорят, что какой-то процесс происходит на расстояниях l, то имеют в виду, что переданные импульсы в этом процессе – порядка ћ/l. Тогда планковским длинам соответствуют импульсы порядка 1019 Gev/c, которые, наверное, никогда не будут достижимы на ускорителях. Кроме того, при этом предполагается, что координатные и импульсные представления связаны преобразованием Фурье, а, как показано в моих работах, это предположение не основано ни на имеющихся данных ни на надежных физических принципах. Между тем, теория струн и М-теория строятся, исходя из координатного представления, хотя опыт квантовой теории показывает, что понятие непрерывных координат становится проблематичным уже на расстояниях намного больших планковских.

Я также думаю, что теории Big Bang и струн не могут быть правильными, исходя из известной фразы Бора. Как-то на обсуждении доклада на семинаре, где он присутствовал, кто-то сказал, что теория автора не может быть правильной т.к. она слишком сумасшедшая. На что Бор возразил, что эта теория не может быть правильной потому, что она недостаточно сумасшедшая. Теории Big Bang и струн явно недостаточно сумасшедшие т.к. в них предполагается, что существующие понятия работают при энергиях намного больших чем те которые мы знаем.

А в целом, мне кажется, что ситуация с инфляционной Вселенной и теорией струн, как и рассмотренные выше ситуации с так наз. обнаружением гравитационных волн и dark energy, характеризуют деградацию современной физики когда establishment поддерживает не те теории, которые доказали свою фундаментальность, а нечто экзотическое, что имеет шанс получить (при существующей системе) позиции, гранты и т.д. Правда, насколько я знаю, за инфляционную Вселенную и теорию струн (пока?) не дали Нобелевскую премию, но зато дают другие премии. Например, премия Мильнера в 3 млн. долларов больше нобелевской. Но здесь никаких возражений быть не может: Мильнер может давать из своего кармана любые премии кому захочет.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22 
Рейтинг@Mail.ru