bannerbannerbanner
О границах науки

В. Н. Катасонов
О границах науки

3. «Метафизика геометров»

До этого мы говорили о метафизических предпосылках в физике, так сказать, макро- и мегауровней. Но возникающее в XVII веке новое естествознание вынуждено вводить еще и метафизику микроуровня. Это естествознание, как мы подчеркиваем, становится, в отличие от античной физики, математическим естествознанием. Основным его языком будут дифференциальное и интегральное исчисления и выходящие из них в дальнейшем конструкции: дифференциальные уравнения, теория комплексной переменной, вариационное исчисление и т. д. Дифференциальное и интегральное исчисления кладут в свое основание концепцию актуально бесконечно малой величины[28], то есть такой, которая меньше любой положительной величины, но одновременно и не есть нуль, – живой парадокс. Античная мысль была знакома с подобными понятиями, но именно в силу этой парадоксальности не желала использовать их в науке. Аристотель дает право на существование в науке только потенциальной бесконечности: процессу увеличения натуральных чисел 1,2, 3…., или процессу же бесконечно продолжающегося деления отрезка и его частей на все более мелкие части. Но «каково число всех чисел?» или «можно ли разделить отрезок до конца, до точек?» – на эти вопросы античная наука отказывается отвечать. Актуальная бесконечность нарушает фундаментальные аксиомы науки (например, часть меньше целого), и поэтому ее запрещается использовать в науке. Отрезок можно бесконечно делить, но нельзя сказать, что он состоит из точек: континуум – это качественно другая реальность, чем множество точек. Отказ от этой установки ведет к апориям («парадоксы Зенона»).

Но вот XVII век вводит в науку понятие актуально бесконечных величин. Пионеры науки Нового времени – Галилей, Лейбниц, Ньютон – прекрасно осведомлены об античном табу на актуальную бесконечность, но, тем не менее, они вводят эти новые конструкции и, более того, делают их основным инструментом математического естествознания. История легализации актуальной бесконечности в науке существенным своим моментом имеет христианское богословие. Античная мысль не может допустить спекуляции об актуально бесконечном, грубо говоря, по простой причине: у нее нет бесконечного предмета, к которому можно бы было привязать эти рассуждения. Но вот с приходом христианства такой «предмет» появляется: христианский Бог довольно быстро, хотя и не сразу, осознается богословами как бесконечно могущественный, бесконечно благой, бесконечно мудрый[29]. Богословы начинают рассуждать о бесконечности Бога, о возможности разных степеней бесконечности, о существовании бесконечностей в тварном мире и т. д. Ко времени поздней схоластики в западном богословии уже налицо целая «культура» обсуждений и конструкций с актуальной бесконечностью, причем не только богословских, но и натурфилософских[30]. Возрождение с его интересом к оккультизму и пафосом «раскрытия тайн» еще более узаконивает тему бесконечности. Поэтому не удивительно, что XVII столетие легализует концепцию актуальной бесконечности и в науке, в дифференциальном и интегральном исчислениях.

Легализует, но при этом ясно осознает, что тем самым строится уже новая наука. Лейбниц, один из создателей дифференциального и интегрального исчислений, прекрасно понимал, что с ними неизбежно приходит некая новая метафизика: «…Судьба даровала нашему веку прежде всего то, что после столь долгих лет забвения вновь воссиял светоч математики, как я его называю. Ведь были открыты и развиты Архимедовы способы исчерпывания через неделимые и бесконечные, что можно было бы назвать метафизикой геометров, и что, если я не ошибаюсь, было неизвестно большинству древних, за исключением Архимеда» [курсив мой. – В. К.][31].

Что же это за новая геометрическая метафизика? Речь идет о введении неких новых постулатов в геометрию, необходимых для конструкций дифференциального исчисления. Так, в одном из первых учебников дифференциального исчисления маркиза Г. Ф. Лопиталя, ученика и соратника Лейбница, в деле развития этого нового учения мы читаем: вводится «…требование или допущение: требуется, чтобы можно было рассматривать кривую линию как совокупность бесконечного множества бесконечно малых прямых линий, или же (что то же самое) как многоугольник с бесконечным числом бесконечно малых сторон…»[32]. То, что многоугольник, вписанный, например, в окружность, при бесконечном увеличении (удвоении) его сторон будет стремиться к окружности, это, конечно, античные математики знали и даже использовали в своих вычислениях. Однако никто не считал на основании этого, что окружность есть бесконечный многоугольник с бесконечно малыми сторонами!.. Более того, острое чувство качественного отличия окружности от любого многоугольника, кривой от прямой, за которым стоял глубоко осознанный опыт онтологических рангов реальности, приводил к тому, что это соотношение вписанного многоугольника и описанной окружности нередко понимали как символ соотношения рассудочного знания и реальности: кажущаяся близость, но принципиальное внутреннее отличие…

Но как раз от этого различения и отказывается XVII столетие. Речь идет именно о введении новой метафизики. Речь не идет о каком-то эмпирическом факте, который кто-то когда-то открыл и увидел: ведь увидеть эти бесконечно малые нельзя ни в какой микроскоп. Лейбниц, как мы уже отмечали, отлично понимает этот метафизический характер нового постулата. Еще одна цитата: в одном письме к Мальбраншу, говоря о путях промысла Божия, Лейбниц пишет: «В сущности ничто не является для Него безразличным, и ни одна тварь и ни одно действие твари не считаются у Него ничтожными, хотя в сравнении с Ним они почти ничто. Свои взаимоотношения они сохраняют и перед Ним, подобно тому как линии, которые мы рассматриваем как бесконечно малые, имеют практически важные соотношения, несмотря на то что в сравнении с обычными линиями они кажутся ничтожными. Кажется, я уже пользовался этим сравнением»[33]. Сравнение любопытно. На первый взгляд здесь ставятся в параллель отношения Бога к твари и отношение обычных линий к бесконечно малым. Хотя несколько странно, что Бог уподобляется «обычной линии»… В то же время говорится: «линии, которые мы рассматриваем как бесконечно малые». Мы рассматриваем эти линии как бесконечно малые, аналогично тому, как Бог смотрит на тварь, которая по сравнению с ним почти ничто. Наше отношение к этим постулируемым бесконечно малым линиям подобно отношению Бога к твари. То есть мы смотрим на них как бы с точки зрения Бога, с точки зрения самой Истины. Другими словами, это действительно некоторая сверхопытная метафизика…

С ней уже в XVII веке было много несогласных. Декарт так и не принял метода бесконечно малых. Известны острые инвективы Беркли против геометрических построений в бесконечно малых треугольниках и точках. С критикой использования актуальной бесконечности выступали Б. Паскаль и А. Арно[34]. И действительно, ведь если метод дифференциального исчисления держится на вышеупомянутом постулате[35], а последний есть только достаточно произвольное положение (мы не столько знаем, что так есть, сколько требуем, желаем, чтобы так было), то тогда все знание, выводимое с помощью дифференциального исчисления, становится в высшей степени условным. Так же как в истории со знаменитым пятым постулатом Евклида, когда оказалось, что его можно заменить на другие положения, и тогда получатся другие типы геометрии, так же и здесь, может быть, можно предложить постулировать другие свойства пространства, и тогда мы получим совсем иную геометрию?.. А наша, лейбницевско – лопиталевская форма геометрии есть только лишь некая частная форма, одна из возможных точек зрения на пространство и на все, в нем находящееся…

 

Все построения с бесконечно малыми рассматриваются Лейбницем не только в геометрии, но и в физике, в создаваемой при его существенном участии новой науке, классической механике. Здесь, между прочим, ясно выступают истинные причины той новой «метафизики геометров», о которой говорил Лейбниц. Ученый и философ отлично понимает, что введение новых законов механики требует их обоснования. Поэтому наряду с законами механики он формулирует и другие законы, более высокого логического порядка. Лейбниц называет их архитектоническими принципами. Причем последние прямо связываются философом с Божественной мудростью: «…все природные явления можно объяснить механически, если мы в достаточной мере сумеем понять их, но сами принципы механики не могут быть объяснены геометрически, так как они зависят от более высоких принципов, которые указывают на мудрость Творца порядком и совершенством своего творения»[36]. Одним из фундаментальных архитектонических принципов у Лейбница является принцип непрерывности: «Когда случаи (или то, что дано) непрерывно сближаются и наконец сливаются друг с другом, необходимо, чтобы следствия, или результаты (или то, что ожидается), претерпевали то же»[37]. Принцип непрерывности означает, что в мире нет скачков, hiatus'ов – «зияний», которые были бы необъяснимы. За принципом непрерывности стоит в конце концов логическая непрерывность, принцип достаточного основания: все происходящее должно иметь достаточную причину, что оно таково, а не иное. Иначе была бы скомпроментирована разумность творения, премудрость Бога. Лейбницевский рационализм в этом смысле есть некий сверхрационализм, основывающийся на богословских аргументах. Но поскольку он выступает как философия человеческого познания, он может оборачиваться и титаническим рационализмом, как претензией на окончательное познание всего сущего… Принцип непрерывности служит основанием для переосмысления и самого движения. «Это же правило, – пишет Лейбниц, – имеет место в физике, например, состояние покоя можно рассматривать как бесконечно малую скорость и бесконечно большую медленность. Поэтому все, что истинно в отношении медленности или скорости, должно оправдывать себя и применительно к покою, рассматриваемому с той точки зрения и, таким образом, правило покоя должно быть расценено как частный случай правила движения… Точно так же равенство может рассматриваться как бесконечно малое неравенство, и можно сколь угодно сближать неравенство с равенством»[38]. Сколь угодно малое сближение неравенства и равенства означает не только то, что равенство можно понимать как бесконечно малое неравенство, но и неравенство как бесконечную цель бесконечно малых равенств. Аналогично не только покой можно интерпретировать как бесконечно медленное движение, но и движение рассматривать как бесконечную сумму бесконечно малых движений, а бесконечно малое движение и есть, в свою очередь, покой. Другими словами, Лейбниц как бы принимает классическое построение Зеноновского парадокса «Стрела»: «движение есть бесконечная сумма состояний покоя; но покой заменяется здесь бесконечно малым движением». На языке классической механики это означает введение понятия мгновенной скорости. Понятия такого же парадоксального, как и бесконечно малое движение, то есть скорости тела, находящегося в данной точке.

4. Дискретность как научно-методологический и метафизический принцип

Лейбницевские метафизические обоснования новой математики и физики недолго занимают собственно ученых. Идеал ученого-энциклопедиста, знающего и занимающегося всем или почти всем, постепенно, по мере развития науки становится недостижимым. Заниматься опытной наукой и одновременно обсуждать философские, а тем более богословские основания этой науки становится все труднее. Наконец, с середины XIX века О. Конт вообще объявляет эти проблемы ненаучными. Кроме того, разрастающееся здание математики и ее успешное применение к естествознанию и технике как бы несли оправдание этих новых методов в самих себе. Однако наиболее глубокие и принципиальные ученые никогда не оставляли надежды получить какое-то обоснование той метафизике геометров, которая была связана с дифференциальным и интегральным исчислением.

С середины XIX века усилия сосредотачиваются на проблеме арифметизации континуума. Несмотря ни на какие успехи математики и математического естествознания, невозможно уже было скрывать, что даже в геометрии мы, строго говоря, не любой отрезок можем измерить. Ведь уже греки открыли факт несоизмеримости. Нужна была строгая концепция действительного числа. В 1870-х годах такие концепции были предложены целым рядом математиков: Ш. Мере, К. Вейерштрассом, Г. Кантором, Р. Дедекиндом. Существенно, что все их конструкции использовали актуальную бесконечность. Кантор в своих исследованиях тригонометрических рядов подходит к идее общей теории множеств. В 1870-1880-х годах у него уже созрели основные понятия этой теории: понятия мощности множества, кардинальных и ординальных чисел. Он доказывает знаменитую теорему, носящую с тех пор его имя, о несчетности множества действительных чисел, строит свою арифметику бесконечных чисел[39]. В геометрии главной проблемой для теории множеств является конструирование континуума. Кантор предлагает несколько таких конструкций, стремясь выделить в континууме то, что делает его собственно непрерывным. Встает вопрос о мощности множества точек континуума. Кантор делает предположение, что эта мощность есть следующая по величине после счетного множества («континуум-гипотеза»). Однако доказать это или опровергнуть ему не удается[40].

Однако претензии автора теории множеств идут гораздо дальше. Он не только перестраивает всю математику, ставя все на фундамент теории множеств, но мечтает аналогичным образом перестроить и все естествознание. Главным инструментом здесь должно было быть понятие n-кратно упорядоченного множества. Например, любую группу людей можно рассматривать как 3-кратно упорядоченное множество: по росту, по весу, по возрасту. В каждом из трех возможных упорядочений множество будет просто упорядоченным. В 1884 году в письме к С. Ковалевской Кантор пишет: «Существуют также типы дважды, трижды, n-кратно и даже ω-кратно etc. (причем речь идет не только о естествознании, но и об искусстве) упорядоченных множеств, благодаря которым, как кажется, на старые и новые вопросы арифметики и космологии может быть пролито много света. Все, что я называю порядковыми типами, имеет в той же степени арифметический, как и геометрический характер, последний именно в случае типов кратно упорядоченных множеств. В то время как декартовски – ньтоновско – лейбницевский метод применяется при условии ограничения феноменов природы, я уже многие годы держусь того мнения, что у нас все еще отсутствует соответствующее строго математическое вспомогательное средство, с помощью которого было бы возможно в определенной мере войти внутрь природных процессов с целью тщательного рассмотрения их не извне, а изнутри, чтобы потом дать их более точное, чем прежде, описание…»[41]. Для применения теории множеств нужно представить материю состоящей из однородных элементов. Кантор называет их вслед за Лейбницем единицами, или монадами. Однако, в отличие от Лейбница, никакой духовной жизни у этих монад не предполагается. Из этих однородных монад – элементов Кантор хочет получить физические, химические, а, возможно, и биологические свойства веществ, применяя исключительно конструкции своей теории множеств. Например, в соответствии с физикой своего времени он рассматривает два типа материи: телесную и эфирную. «С этой точки зрения в качестве первого вопроса, до которого, однако, не додумались ни Лейбниц, ни более поздние ученые, возникает такой: какие мощности соответствуют этим двум материям в отношении их элементов, когда они рассматриваются как множества телесных, соответственно, эфирных монад? В этой связи я уже давно выдвинул гипотезу, что мощность телесной материи – это та, которую я называю в своих исследованиях первой, но что, напротив, мощность эфирной материи является второй»[42]. Другими словами, мощность множества телесных монад есть, по Кантору, Х0 – мощность счетного множества, а мощность множества эфирных монад – Хр первое следующее за Х0 кардинальное число. Это предположение необходимо Кантору для реализации его чисто формального подхода к физике с помощью теории множеств. Претензии Кантора титаничны: он хочет осуществить тотальную аналитическую деструкцию всего: континуум пространства, материя, природа и человек, картины и симфонии – все должно быть рассыпано в «песок» бескачественных элементов теории множеств. И обратно, всякая качественная определенность должна быть сведена к количественной в терминах канторовской бесконечной арифметики. Полезно еще раз подчеркнуть, что канторовские элементы ничего общего с лейбницевскими монадами не имеют. Элементы теории множеств – это абстрактные сущности. Тем самым Кантор пытался сложить конкретное из абстрактного, вычислить, так сказать, все сущее на листке бумаги… Дух этой титанической задачи все время витает над страницами канторовских сочинений, однако окончательного воплощения эти замыслы так и не получили…

 

Даже внутри математики (и логики) теория множеств столкнулась с серьезными препятствиями. Континуум-гипотеза не была доказана. В лице аксиомы-выбора выступило еще одно утверждение, которое нельзя было ни доказать, ни опровергнуть в рамках теории множеств стандартного типа. Эта аксиома была необходима для доказательства многих важных положений математического анализа. Замена ее на другую приводила к построению довольно экзотических математик. Обнаружилось, что отнюдь не любые множества можно рассматривать в теории множеств («парадокс Рассела»). Все это заставило гораздо строже относиться к построениям с бесконечными множествами, чем это мыслилось в «наивной теории множеств» времен Кантора, и вводить здесь соответствующие ограничения. Тем не менее все здание математики было в XX веке поставлено на фундамент теории множеств. Каждая теория была интерпретирована как некоторая структура на бескачественном множестве. Систематически это было проделано группой французских математиков, которые под псевдонимом «Н. Бурбаки» начали с 40-х годов издание серии книг «Трактат по математике», с единой точки зрения представляющих все главные направления этой науки. И первым томом этой серии была как раз книга, посвященная теории множеств. Теория множеств стала в XX веке основным языком математики. Как сказал, обсуждая апории теории множеств, один из крупнейших математиков XX века Д. Гильберт: «Никто не может изгнать нас из рая, который создал нам Кантор»[43].

Теория множеств, претендующая, так сказать, на то, чтобы «пересчитать» все точки континуума и тем самым как бы сложить континуум из точек, была самым радикальным выражением пафоса дискретности в науке. На рубеже XIX–XX веков идея дискретности становилась все более популярной. Интересно, что одним из страстных пропагандистов этой идеи был профессор Московского университета Н. В. Бугаев. Он был не только известным математиком, но и регулярно проводил занятия философско-математического кружка, который пропагандировал определенную научно-философскую идеологию. Суть ее не раз излагалась Бугаевым в публичных лекциях. Так, в докладе «Математика и научно-философское мировоззрение» он настойчиво доказывал, что принцип непрерывности, ведущий к использованию в естествознании только аналитических функций, явно недостаточен как универсальный методологический принцип науки. Учение о функциях непрерывных должно обязательно быть дополнено учением о разрывных функциях – аритмологией. «Присматриваясь к явлениям природы, мы скоро подмечаем такие факты, которые не могут быть объяснены с точки зрения одной непрерывности. Нет простых тел всякой [то есть любой. – В. К.] плотности. Каждое простое тело есть самостоятельный химический индивидуум. Рассматривая сложные химические тела, мы также обнаруживаем, что они образуются из элементов, вступающих в химические соединения только в определенных пропорциях… Атомистические теории химии ясно указывают на индивидуальные особенности в строении вещества… Из акустики мы знаем, что только определенное сочетание звуков производит эстетическое впечатление. Музыкальное чередование звуков имеет вполне аритмологический характер. В биологии клеточное строение органических тел указывает на важную роль биологических индивидуумов в явлениях жизни. Явления сознания также представляют много сторон, не подчиняющихся аналитическому взгляду на природу. В социологии человек есть самостоятельный социальный элемент, и непрерывность неприменима к объяснению многих общественных явлений. Одним словом, существует много случаев, в которых обнаруживается прерывность в ходе и в самом развитии общественных событий»[44]. Идеи Бугаева глубоко воспринял и развивал П. А. Флоренский, учившийся в это время в МГУ Идеи прерывности и пафос методов, направленных на изучение формы, заняли одно из центральных мест в творчестве (в дальнейшем) священника Павла Флоренского[45]. Пафос дискретности, прерывности имел для него, в частности, и религиозный смысл. Все существенное в религиозной сфере связано с прямым вмешательством Бога, происходит скачком, прерывно, не сводится к посюсторонней, причинной обусловленности прошлым, а телеологически направлено к будущему, к новой жизни…

Методологическая и одновременно онтологическая идея прерывности получила в XX веке серьезную поддержку в связи с квантовой механикой и изучением микромира. В отличие от классических представлений, было выяснено, что энергия излучается квантами, электронные состояния образуют дискретную последовательность уровней, разрабатывались концепции квантованного пространства – времени. Хотя одновременно наряду с этим у микрочастиц были обнаружены и волновые свойства, что привело к формулировке тезиса о корпускулярно-волновом дуализме. Вообще физика и математика естествознания начиная с XVII столетия развивались в удивительной генетической близости. Уже с самого начала, как обсуждали мы выше, понятия дифференциала и касательной были специально выработаны для выражения интуиции мгновенной скорости, скорости в точке. Эта связь математики и физики оставалась прочной и в дальнейшем. Теоретико-множественная перестройка математики в XX веке оказывала характерное влияние и на физику, причем к концу столетия это влияние стало явно усиливаться. В отечественной физике появилась теория физических структур Ю. И. Кулакова, которая, по признанию самого автора, представляет собой «бурбакизацию» физики. В аналогичном же направлении разрабатывает свою теорию бинарных физических структур и Ю. С. Владимиров. Несмотря на то что философские и методологические установки этих двух авторов различны – Кулаков ориентирован на Платона, Владимиров – больше на Аристотеля, для первого важна непрерывность, а второй может обойтись и без нее, – исходная точка их рассуждений общая: некоторая теоретико-множественная конструкция[46].

С идеологией дискретности связана и современная информационная техника. Первая механическая вычислительная машина была построена еще в XVII столетии Б. Паскалем. После с изобретением электронных ламп в 40-х годах XX века начинается постройка первых ЭВМ. Они, естественно, используют двоичную систему счисления (0,1), значение которой в деле алгоритмизации осознал еще Лейбниц («Адамов язык»). После Второй мировой войны в связи с прогрессом электроники начинается и ускоренное развитие электронных информационных устройств. Существенно, что вся эта техника – коммуникативная, вычислительная, аудио, видео – является цифровой, то есть использующей в качестве базисного бинарный алфавит (0,1). Все непрерывные функции в этой технике сводятся к ступенчатым, дискретным. Возможность подобного моделирования непрерывных процессов изучается целым отдельным направлением в математике, а возможность машинного моделирования – специальным отделом математической логики. С точки зрения этой технологии все процессы, все знание о мире в принципе может быть разложено в последовательность нулей и единиц, выражено одним линейным файлом, представлено в виде информации. Информация в этом смысле выступает как знание, доступное машинной обработке. Несмотря на головокружительные успехи цивилизации в этом направлении – решение задач распознавания образов, повышение скорости обработки информации, построение многофункциональных роботов, – идея превращения всего знания в информацию находит себе границу не только в естественном «гуманитарном инстинкте» человека, но и в конкретных научных разработках: наблюдениях над особенностями взаимодействия человека и машины (физиологическая и психологическая характеристики воздействия компьютера на человека), в осознании ограниченности эстетических возможностей электронных синтезаторов («грубость» цифровой музыки, изображения), в принципиальных вопросах алгоритмизации процесса познания (теорема Гёделя о неполноте, теоремы неразрешимости и т. д.). Однако, тем не менее, идеология дискретности остается на сегодня в высшей степени популярной.

28Как и актуально бесконечно большой величины.
29Подробнее см. мои работы: Катасонов В. Н. Концепция актуальной бесконечности как «научная икона» Божества // Христианство, наука, культура. М., 2005; Катасонов В. Н. Боровшийся с бесконечным. Философско-религиозные аспекты генезиса теории множеств Г. Кантора. М., 1999.
30См. об этом, например, в прекрасной книге: Зубов В. П. Развитие атомистических представлений до начала XIX века. М., 1965. Гл. П.
31Элементы разума. С. 452 // Лейбниц Г. В. Сочинения в 4 томах. Т. 3. М., 1984.
32Лопиталь Г. Ф. Анализ бесконечно малых. М.; Л., 1935. С. 63–64.
33Лейбниц – Мальбраншу. С. 338 // Лейбниц Г. В. Сочинения в 4 томах. Т. 3. М., 1984.
34См. мою статью: Концепция актуальной бесконечности как «научная икона» Божества // Катасонов В. Н. Христианство, Наука, Культура. М., 2005.
35То есть из учебника Г. Ф. Лопиталя.
36Лейбниц Г. В. Анагогический опыт исследования причин. С. 129 // Лейбниц Г. В. Сочинения в 4 томах. Т. 3.
37Письмо господина Лейбница о всеобщем принципе, пригодном для объяснения законов природы с точки зрения божественной мудрости, служащее отзывом на ответ преподобного отца Мальбранша. С. 357 // Лейбниц Г. В. Сочинения в 4 томах.
38Цит. соч. С. 358.
39Подробнее см. в моей книге: Катасонов В. Н. Боровшийся с бесконечным…
40Как известно, в XX веке усилиями К. Гёделя и П. Коэна было доказано, что континуум-гипотеза независима от аксиом теории множеств Цермело – Френкеля.
41Georg Cantor to Sophie Kowalevski. Dec. 7, 1884 // Danben J. W. Georg Cantor: His Mathematics and Philosophy of the Infinite. Harvard University Press. Cambrige. L. 1979. P. 310–311.
42О различных теоремах из теории точечных множеств. Сообщение второе. С. 168 // Кантор Г. Труды по теории множеств. Отв. ред. А. Н. Колмогоров, А. П. Юшкевич. М., 1985.
43О бесконечном. С. 350 // Тшъберт Д. Основания геометрии. М.; Л., 1948.
  Бугаев Н. В. Математика и научно-философское мировоззрение. Статью можно найти на сайте: http://www.wsewmeste,.ru/
45См., например, работы: Об одной предпосылке мировоззрения // Свящ. Павел Флоренский. Сочинения в 4 томах. Т. 1. М., 1994. С. 70–78; Пифагоровы числа // Свящ. Павел Флоренский. Сочинения в 4 томах. Т. 2. М., 1996. С. 632–646.
46См. работы: Кулаков Ю. И., Владимиров Ю. С, Карнаухов А. В. Введение в теорию физических структур и бинарную геометрофизику. М., 1991; Владимиров Ю. С. Метафизика. М., 2002.
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21 
Рейтинг@Mail.ru