bannerbannerbanner
Необычные размышления о…

Валерий Иванович Климов
Необычные размышления о…

10.3. Определение скорости галактики с помощью обсерватории LIGO

На создание обсерватории LIGO были потрачены сотни миллионов, если не миллиарды долларов. Хочется, чтобы такие траты имели более значительную обусловленность. Для чего предлагаем задействовать обсерваторию LIGO для определения суммарной скорости перемещения нашей галактики в мировом пространстве и линейной скорости перемещения Солнца вокруг центра галактики. При этом мы должны помнить о том, что LIGO состоит из двух обсерваторий: в Ливингстоне (штат Луизиана) и в Хэнфорде (штат Вашингтон), удаленных друг от друга на 3002 километра. По замыслу авторов LIGO, этот факт, дескать, позволит определить направление на источник гравитационных волн. Ясно, что все четыре плеча таких двух обсерваторий не лежат в одной плоскости. Из-за сферичности Земли.

Четыре плеча обеих обсерваторий образуют в пространстве неизменную объемную конфигурацию. Однако она, перемещается в пространстве (из-за суточного и годового движений Земли). Такие движения Земли приведут к тому, что проекции неподвижного в пространстве суммарного вектора скорости галактики и Солнца вокруг галактики, а также линейные скорости суточного и годового движений Земли, на четыре плеча обеих обсерваторий, будут постоянно меняться. Но, при этом, представляется возможным, по таким проекциям построить пространственный суммарный вектор скорости и по направлению и по модулю.

Сложность состоит в том, чтобы в процессе измерений сохранить постоянной пространственную объемную конфигурацию из четырех плеч обеих обсерваторий. Если замеры производить сначала на одной обсерватории, а затем на другой, то из-за вращения Земли, и конечной жесткости измерительной конфигурации четырех плеч обсерваторий, конфигурация измерителя будет претерпевать изменения.

Замеры необходимо производить одновременно на всех четырех, разнесенных в пространстве, плечах обеих обсерваторий. Достичь этого возможно предварительной синхронизацией всех, задействованных в измерениях, часов.

Итак, методика определения искомого суммарного вектора скорости (по направлению и модулю) с помощью обеих обсерваторий LIGO, выглядит следующим образом. Собираем в одном месте 8 цезиевых часов. По двое часов на каждое плечо. Синхронизируем их, то есть выставляем на них одинаковую точку отсчета времени (одинаковый ноль). Размещаем часы на четырех плечах двух обсерваторий. Причем, на каждом плече, одни часы совмещаем с источником лазерного излучения, а вторые часы устанавливаем в конце четырех – километрового плеча, и совмещаем их (часы) с приемником лазерного излучения.

Определяем договорное время начала измерений. Договорное время – это любые, но одинаковые показания времени на всех 8 часах. В такое договорное время запускаем на всех четырех плечах лазерные импульсы и фиксируем показание часов на всех четырех плечах. Ясно, что такие четыре показания времени должны быть абсолютно одинаковы.

Ждем, пока четыре лазерных импульса в каждом плече достигнут своих приемников и в моменты их достижения, фиксируем показания часов, которые в каждом плече совмещены с приемниками лазерных импульсов. Вычисляем раздельно времена пролета лазерных импульсов в каждом из четырех плеч двух обсерваторий. Такие времена отражают проекции искомого суммарного вектора скорости.

Методами векторной математики, по таким проекциям, определяем искомый суммарный вектор скорости (по направлению и по модулю). При этом, заблаговременно, методами сферической тригонометрии, рассчитываем пространственные параметры объемной конфигурации, состоящей из четырех плеч обеих обсерваторий. Исходными данными, при этом, являются широта и долгота обеих обсерваторий, расстояние между ними (3002 км), допущение о сферичности (сфероид Красовского) Земли, ориентация в пространстве всех четырех плеч обеих обсерваторий. Поскольку все четыре плеча не лежат в одной плоскости, то для определения искомого суммарного вектора всех скоростей, достаточно одного одновременного замера на всех четырех плечах.

Мы получаем мгновенный суммарный вектор всех скоростей, с которыми перемещается наша объемная конфигурация из четырех плеч обсерваторий. Чтобы получить годовой график изменения такого суммарного вектора, необходимо хотя бы раз в сутки производить такие измерения. В результате за год получим 365 точек, по которым можно построить годовой график изменения суммарного вектора скорости. Постоянная составляющая на таком графике будет отображать суммарный вектор перемещения галактики и Солнца вокруг центра галактики (практически неизменная в течение 10 лет).

Переменная составляющая на таком графике (синусоида) отобразит вектор скорости годового движения Земли. Разность в амплитуде (между максимальным и минимальным значениями такой синусоиды) позволит нам рассчитать по Лоренцу сокращение в длине нашего стержня – четырех километрового плеча обсерватории. Поскольку такой стержень будет перемещаться в мировом пространстве с переменной, но известной нам, скоростью.

Вместе с тем, определить искомый вектор скорости возможно и по двум плечам одной обсерватории. Но для этого необходимо произвести несколько замеров, то есть, как бы просканировать искомый вектор скорости проекциями такого вектора на два плеча одной обсерватории.

Для достоверности целесообразно построить искомый вектор скорости различными способами. И с помощью четырех плеч, и с помощью двух плеч (причем на каждой обсерватории). Результаты таких определений суммарного вектора скорости галактики и Солнца вокруг центра галактики, должны быть абсолютно идентичными. Что укажет на правильность наших рассуждений.

Итак, какая польза от проверки предложенных нами идей с помощью обсерваторий LIGO?

Во-первых, это практика на супер точном, супер чувствительном устройстве. А практика – это критерий истины.

Во-вторых, в случае положительного результата, после такой практической проверки, мы можем назвать истинными новые знания. Какие знания?

Это то, что абсолютная система отсчета (неподвижная сетка) имеет право на существование.

Мы получим право (вопреки убеждениям Галилео Галилея и других) утверждать, что состояние покоя и инерциального движения различимы в так называемой инерциальной системе отсчета.

Мы сможем, находясь внутри галактики, измерить вектор скорости движения галактики и вращения Солнца вокруг центра галактики.

Кроме того, опираясь на устройство LIGO, представляется возможным доказать несостоятельность преобразований Лоренца, и как следствие, несостоятельность специальной теории относительности.

Выше мы рассчитали, что, если разность между максимальным и минимальным значениями амплитуды суммарного вектора скорости (из-за годовой составляющей скорости) составит – 10 км/сек, то удлинение (или укорочение) такого стержня, как четырех километровое плечо обсерватории, составит – 0,00002 мм. Что на десятки порядков (в триллионы раз) выше одной тысячной диаметра протона.

Интерферометр LIGO обязательно зафиксирует такое удлинение плеча обсерватории LIGO. В реальности, перепад между максимальным и минимальным значениями амплитуды суммарного вектора может составить – 60 км/сек. Все зависит от того, как расположены в пространстве вектор скорости годового движения Земли и вектор скорости движения галактики. И, если до сих пор в обсерватории LIGO, удлинение Лоренца не зафиксировано, то такого удлинения не существует в природе. На наш взгляд, это очень важные для науки новые знания. Так что призываем исследователей LIGO принять участие в практической проверке таких новых знаний. Естественно, с участием авторов высказанных идей (авторами данной книги). На наш взгляд, такие, подтвержденные практикой, новые знания, достойны совместного поощрения в Нобелевском Комитете.

Современная космология бездоказательно утверждает, что наша вселенная ускоренно расширяется. Смущает слово “ускоренно”. Означает ли это слово, что, например, галактика Млечный путь перемещается в пространстве с ускорением? У нас появляется возможность проверить это. Если, окажется, что на графике (рис. 9.1.), вектор скорости Vгс, безупречно параллелен временной оси абсцисс, то это значит, что наша галактика перемещается с постоянной скоростью и на нее не действует темная энергия, которая, якобы, придает ей ускорение. При этом, само существование темной энергии будет поставлено под сомнение. Если же, с течением времени, мы увидим некий угол наклона вектора скорости Vгс к оси абсцисс, то это будет означать, что наша галактика движется с ускорением или замедлением (в зависимости от того, куда наклонен вектор Vгс – от оси абсцисс или в сторону оси абсцисс). Тогда нужно будет искать причину такого ускорения или замедления.

10.4. Метод параллакса

Астрономы всегда искали способы определить расстояние до той или иной звезды или галактики. Таких способов, которые не вызывают сомнение, не так уж много. Один из таких методов основан на измерении яркости: в качестве эталона яркости выбирают что-то неизменное, например, яркость Солнца или яркость сверхновой типа А (взрыв белого карлика, после того, как он перекачает в себя материю из соседней звезды-двойника). Известно, что яркость уменьшается с квадратом расстояния. Еще в 17 веке Христиан Гюйгенс (1629–1695), по яркости захотел вычислить расстояние до самой яркой звезды – Сириуса. Затем, вычисления Гюйгенса уточнил Ньютон. Но оба они ошиблись в определении расстояния до Сириуса, Ньютон – в два раза, Гюйгенс – в 50 раз.

Другим методом определения расстояния, который также не вызывает сомнения, является метод параллакса. Параллакс – это угол, который образуется двумя прямыми линиями, исходящими из далекой звезды. При этом, конец, одной из этих линий должен пересечь центр Земли, а, конец другой линии – пересечь центр Солнца. Кроме того, необходимо, чтобы треугольник, который состоит из упомянутых двух отрезков (соединяющих звезду с Землей и Солнцем), а также из третьего отрезка, соединяющего Солнце с Землей, был прямоугольным. Причем прямой угол такого треугольника должен лежать внутри Солнца, то есть вершина прямого угла должна совпадать с центром Солнца.

 

Другими словами, параллакс – это угол, опирающейся на средний радиус (150 000 000 километров) траектории Земли при ее годовом движении. Если такой радиус из какой-нибудь звезды виден под углом в одну угловую секунду, то расстояние до такой звезды будет равно – 3,26 световых года. Такое расстояние называют парсеком. Ближайшая к Земле звезда – Альфа Центавра, которая включает в себя три звезды: Альфа Центавра-А, Альфа Центавра-Б и красного карлика – Проксима Центавра, находится от Земли на расстоянии 4,4 световых лет. Поскольку эти три звезды друг от друга находятся на незначительном расстоянии, то все три звезды с Земли видятся одной звездой. Параллакс Альфа Центавры около одной угловой секунды. Сегодня спутник (типа Гиппарх), предназначенный для наблюдений за параллаксом с высокой точностью, позволяет измерить расстояние до звезды, отстоящей от Земли на удалении в 1000 световых лет. Но это предел для метода наблюдений за параллаксом. Потому что измеряемые углы (параллаксы) настолько малы.

Напомним, что диаметр нашей галактики 100 000 световых лет, а расстояние до Андромеды – 2,5 миллиона световых лет. Так что, существующий метод параллакса можно применить к ограниченной когорте близ лежащих звезд. Однако, если мы найдем способ, при котором окажется возможным опираться при наблюдении за параллаксом на расстояние, большее 150 млн. километров (расстояние от Земли до Солнца), то возможности метода наблюдений за параллаксом резко возрастут. Наши предложения представлены на рис. 10.1.

Рис. 10.1


где: А – звезда, параллакс P которой необходимо определить;

Vгс – суммарный вектор скорости перемещения галактики и Солнца;

альфа – угол между направлением на звезду и вектором Vгс, измеренный в начальный момент (точка В) временного отрезка Т;

бета – угол между направлением на звезду и вектором Vгс, измеренный в конце (точка С) временного отрезка Т.

В нашем методе измерения параллакса, мы считаем, что направление вектора Vгс неизменно в пространстве. Наша галактика движется таким образом, что вектор Vгс находится на одной линии. Это следует из всех наших предыдущих рассуждений. Следовательно, отрезок ВС из треугольника АВС находится на одной линии с вектором Vгс. Из треугольника АВС видно, что параллакс P можно определить следующим образом:

P = 180 – (альфа + (180 – бета)) = бета – альфа; (10.1).

Если принять, что Т = 1 год (31 536 000 сек); Vгс = 1000 км/сек., то узнаем, что расстояние, которое преодолеет наша галактика в пространстве (отрезок ВС на рис), будет равно: 31 536 000 сек * 1000 км/сек = 31 536 000 000 километров. Эта цифра более чем в 200 раз превышает расстояние между Солнцем и Землей (150 млн. километров). Следовательно, представляется возможным измерять параллакс звезд, отстоящих от Земли на расстоянии 200 000 световых лет.

Если принять, что параметр Т = 15 лет, то представится возможным за 15 лет измерить параллакс звезд, отстоящих от Земли на расстоянии 3 000 000 световых лет, что позволит уточнить расстояние до всех звезд галактики Андромеда. При условии, что вектор Vгс перпендикулярен (или близок к перпендикулярному) направлению на Андромеду. Если окажется, что направление на Андромеду и вектор Vгс находятся на одной линии, то мы не сможем измерить расстояние до всех звезд галактики Андромеда. Допускается, чтобы угол альфа в треугольнике АВС был тупым. Но насколько – нужно считать.

К сожалению, мы таким методом не сможем уточнить расстояние до звезд нашей галактики, поскольку ее звезды перемещаются в пространстве вместе (синхронно) с галактикой.

10.5. Метод звездной аберрации

Может наблюдаться при следующем аналогичном явлении. При езде на автомобиле, мы видим, что близлежащие к нам телеграфные столбы проносятся мимо нас с большой скоростью. На фоне далеко отстоящих от нас объектов (вершин гор, зданий и тому подобное), которые проплывают мимо нас замедленно. Если этот эффект распространить на звезды, то окажется, что близко расположенные к нам звезды, при годовом перемещении Земли, как-бы совершают годовые колебательные движения на фоне слишком удаленных звезд.

Зная расстояние, проходимое Землей за год в диаметрально противоположных направлениях, скорость перемещения Земли, и, измеряя скорость и амплитуду таких колебаний, можно определить расстояние до звезды. Скорость годового перемещения Земли – 30 км/сек. Скорость перемещения галактики – приблизительно 1000 км/сек. Зная точное значение величины вектора скорости галактики, и, производя соответствующие измерения относительного перемещения близлежащих звезд, на фоне удаленных звезд, можно расширить возможности метода звездной аберрации.

В целом, можно сказать, что польза от предложенного просматривается.

11. Еще раз об ошибочных взглядах Маха, Эйнштейна

Мы должны признать, что основной тормоз в реализации изложенной выше пользы проистекает от неверных предположений, принципов, неверных аксиом, неверных гипотез, которые умудрились стать теориями, не пройдя испытания критерием истины – практикой. И, самым главным тормозом – является авторитет лиц, провозгласивших такие ошибочные принципы, аксиомы, гипотезы, не подтвержденные практикой. Речь идет об ошибочном принципе относительности Маха, преобразованиях Лоренца, о Германе Минковском, разработавшем геометрическую четырехмерную модель пространства-времени, и, конечно, о самом Альберте Эйнштейне, который выдвинул гипотезу относительности, которую почему-то называют теорией относительности.

Авторитет перечисленных лиц – словно многопудовая гиря на ногах утопленника. Если под утопленником понимать науку. Перечить таким товарищам – чревато последствиями, но истина дороже. Путь к истине, находят настырные и отчаянные, рискнувшие дерзнуть. Так что, будем дерзить и рисковать. О принципе относительности Маха нами сказано много. В противоположность принципу относительности, мы предпочли принцип абсолютности пространства и времени. При этом, мы опирались на абсолютного посредника – фотон (свет). С помощью света, мы встроились в абсолютную, неподвижную в пространстве сетку, включающую в себя все точки испускания света, из которых испустили свет в прошлом и настоящем.

И, с помощью света, обладающего абсолютной скоростью, мы сумели измерить скорость объектов, в том числе и галактики. Привязка к абсолютно неподвижной сетке с помощью абсолютного посредника (света), позволяет нам говорить об абсолютности пространства и абсолютности времени. В свою эпоху Исаак Ньютон уже отсылал нас к абсолютному времени. Он писал: “Абсолютное, истинное математическое время, само по себе и по самой своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью”.

Да, Ньютон не связывает абсолютное время через абсолютного посредника (свет) с абсолютно неподвижной сеткой (точки испускания света), но он постоянно напоминает нам о неподвижной сетке, о неподвижной решетке. Невозможность существования абсолютного времени, сторонники Эйнштейна связывают с невозможностью синхронизации часов. Дескать, считают они, для такой синхронизации необходим сигнал с бесконечно большой скоростью.

Вовсе не обязательно. Для синхронизации часов необходимо знать точное расстояние между местоположением часов, а также нужен посредник (свет, как переносчик синхронизирующего сигнала), обладающий конечной, но постоянной скоростью. Ну, и, в чем проблемы?

Абсолютность скорости света, разрешает нам рассуждать о единственной когорте инерциальных систем – траекториях света, поскольку во вселенной только свет (и нейтрино) могут перемещаться равномерно и прямолинейно. Все остальные материальные объекты, вместе с Землей, солнечной системой, галактикой, участвуют в криволинейных движениях. Состояние покоя во вселенной – это некая абстракция. В природе состояния покоя не существует. Все куда-то перемещается, причем с приличной скоростью. Этот телеграфный столб покоится относительно того дерева, но в мировом пространстве они оба несутся с огромной скоростью, поскольку галактика имеет огромную скорость.

Такие ситуации необходимо учитывать в рассуждениях об инерциальных системах отсчета, законе инерции Галилея и Ньютона, о, якобы, невозможности отличить состояние покоя от состояния инерциального движения.

12. Красное смещение обусловлено эффектом Комптона

Мы уверены, что именно фотон и нейтрино являются переносчиками энергии, импульса и момента в макромире, а также, частично, и в микромире. И, это также подтверждает их исключительную абсолютность. И фотон, и нейтрино летят в пустом (вакуумном) пространстве с одинаковой скоростью. При этом, они могут лететь бесконечно далеко и бесконечно долго. Никаких изменений в них не происходит, то есть переносимые ими энергия, импульс и момент не изменяются. Это может продолжаться миллионы, миллиарды, триллионы лет.

Но стоит фотону (о нейтрино пока трудно сказать что-то определенное) столкнуться с материальным объектом, например, с протоном или электроном, так сразу (мгновенно) начинается процесс передачи такому объекту энергии, импульса, вращательного момента. Проявляется такая передача в том, что фотон изменяет свои возможности переносить в дальнейшем энергию, импульс и момент в прежних объемах. Например, уменьшается частота фотона, или, согласно выражению (E= h*f) Макса Планка, уменьшается переносимая фотоном энергия.

Эффект Комптона это убедительно доказал. Аналогично обстоит дело с импульсом и моментом, которые фотон переносит через пространство. Световой или солнечный парус, своими поступательным и вращательным движениями, подтверждает это на практике. Для частиц, с массой, равной нулю, и, движущейся со скоростью света (для фотона), справедливо следующее соотношение: p=E/c= h*f/с. Мы видим, что энергия и импульс фотона зависят от его частоты f. Согласно эффекту Комптона, при столкновении фотона с материальным объектом, происходит уменьшение частоты фотона, а, следовательно, уменьшаются переносимые фотоном энергия и импульс. То есть, после такого столкновения, фотон располагает уменьшенной энергией и импульсом.

Уменьшение энергии и импульса фотона зависит от характера столкновения фотона с материальным объектом (электроном, протоном). Если столкновение лобовое, то весь импульс передается протону или электрону. Импульс фотона становится нулевым, то есть фотон перестает перемещаться или прекращает свою жизнь, ибо неподвижных фотонов в природе не существует. При этом, вся энергия фотона передается частице, с которой произошло столкновение. И частица, приобретя от фотона энергию и импульс, начинает ускоренно перемещаться (увеличивается ее кинетическая энергия) в направлении первоначального перемещения фотона (из-за полного израсходования импульса).

Если столкновение не лобовое (касательное, рикошетирующее), то фотон изменяет свое направление движения, но при этом продолжает жить. Правда, его энергия уменьшается в соответствии с выводами Комптона (частота фотона уменьшается согласно формуле Комптона). Импульс фотона также уменьшается. Именно этим (эффектом Комптона) объясняется красное смещение. То есть столкновениями фотонов с частицами в космосе, а не каким-то мифическим эффектом Доплера. Такой эффект применим только к звуковым частотам, но не к световым (электромагнитным).

Откуда в космическом пространстве электроны, протоны и другие частицы? Напомним, что только наше Солнце ежесекундно выбрасывает в космическое пространство около 4 миллионов тонн различных частиц. А, в нашей галактике свыше 100 миллиардов звезд, многие из которых, намного крупнее Солнца. Так называемые, туманности простираются в пространстве на десятки триллионов километров. И все они заполнены атомами водорода, гелия, другим веществом и множеством различных частиц. Так что электромагнитному излучению звезд (в том числе и свету), есть с чем столкнуться в космосе, и, тем самым переместиться в длинноволновую сторону (в том числе – и в красно волновом диапазоне частот).

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 
Рейтинг@Mail.ru