bannerbannerbanner
Вирусы. Драйверы эволюции. Друзья или враги?

Майкл Кордингли
Вирусы. Драйверы эволюции. Друзья или враги?

Токсичные помощники

В течение многих столетий одно только упоминание о холере вызывало у людей страх. В наши дни эпидемии, вызываемые холерным вибрионом, остаются самыми распространенными в мире и часто возникают на фоне природных катастроф. Холерой заражаются при употреблении внутрь зараженной еды или воды, в результате чего возникает тяжелый и длительный понос, сопровождающийся тяжелым обезвоживанием. Если больного не лечить, возмещая потери воды и электролитов, болезнь быстро становится опасной для жизни, особенно если пациент молод или ослаблен. Тяжелый водянистый понос, вызываемый патогенным возбудителем холеры, – центральное событие для понимания успешности этого кишечного микроба (Faruque, Albert, Mekelanos, 1998). Этот симптом является средством, с помощью которого она передается от одного хозяина к другому, и основой эпидемии, когда отсутствует элементарная санитария и гигиена.

Холера в той или иной форме преследует человечество на протяжении многих веков. Родина холеры находится в Азии, в дельте Ганга, где эта бактерия процветает в солоноватой теплой воде устья великой реки. Именно отсюда распространилась эта болезнь в 1817 году, вызвав первую в мире документально зафиксированную пандемию холеры. Она быстро распространилась через континентальную Азию на весь остальной мир, и процесс этот ускорился благодаря британской торговой практике. Вся торговля с Индией находилась в руках Ост-Индской компании. Эта компания начала свою деятельность с поставок пряностей из Южной Азии, а затем обеспечила британскую монополию на все торговые отношения с Индостанским субконтинентом. На торговых путях господствовали британские парусные суда, трюмные воды которых были загрязнены зараженной водой Бенгальской бухты, и эту воду затем сливали в эстуариях родных портов. Первая эпидемия холеры разразилась в Лондоне в 1832 году и унесла тысячи жизней, а в течение следующих пятидесяти лет зараза проложила путь в Монреаль, а оттуда в Нью-Йорк. Вскоре холера поразила весь земной шар.

К середине девятнадцатого века стало понятно, что источником заражения является питьевая вода. В 1883 году Роберт Кох, выдающийся немецкий бактериолог, лауреат Нобелевской премии, возглавил Германскую комиссию по холере, направленную на изучение вспышки холеры в Египте. Там Кох первым выделил, идентифицировал и вырастил в культуре бактерию V. Cholerae – холерный вибрион. Существует множество штаммов вибриона, но только два серотипа – 01 и 02 вызывают заболевание. На поверхности клеток этих патогенных штаммов экспрессируются белки фимбрий (вырабатывающих токсин фимбрий), которые образуют выросты на клеточной поверхности, позволяющие вибриону заселять тонкий кишечник. Кроме того, холерные вибрионы обладают генами, которые кодируют чрезвычайно мощный экзотоксин, известный под названием холерного токсина. Этот экзотоксин секретируется в просвет тонкого кишечника и проникает в клетки кишечной стенки. Оказавшись внутри клеток, токсин нарушает их гомеостаз, что приводит к массированному выходу из клеток ионов неорганических солей. Это, в свою очередь, создает градиент концентрации соли, который вызывает выход воды из организма в просвет кишечника, где создается высокое осмотическое давление, и развивается сильнейший понос, при котором из кишечника выделяется водянистый кал, напоминающий «рисовый отвар». Сегодня мы знаем, что патогенность холерного вибриона, безвредного морского микроба, обитающего в эстуариях рек и в прибрежных водах, обусловлена горизонтальной передачей генов в ходе конверсии фагов.

Первым действующим лицом этого превращения является сегмент ДНК длиной в 41 тысячу нуклеотидных оснований, содержащий генный кластер, кодирующий белки для содержащих токсин фимбрий. Второе действующее лицо – умеренный фаг CTXФ, снабженный одноцепочечной ДНК, в которой расположены гены, кодирующие холерный токсин – CtxAB (Waldor, Mekalanos, 1996). Фимбрии (бахромки) на поверхности бактерии не только помогают ей прикрепиться к стенке тонкой кишки, но и являются клеточными рецепторами к CTXФ. Клетки вибриона, обладающие фимбриями, распознаются и инфицируются фагом CTXФ. Представляется, что предковая форма холерного вибриона вначале приобрела генный кластер, кодирующий фимбрии, что открыло путь инфицированию и конверсии фага CTXФ (Davis, Waldor. 2003). Профаг CTXФ и его гены, отвечающие за синтез токсина, являются частью генома клетки-хозяина и наследуются дочерними клетками вибриона. После первоначального инфицирования клетка-хозяин и ее CTXФ претерпели выраженную адаптивную совместную эволюцию. Имеет место тонкое взаимодействие между геномами профага и клетки-хозяина, и это взаимодействие наиболее очевидным образом проявляется в регуляции активности генов токсина в профаге. Экспрессия их преимущественно направляется не самим фагом, но белками, кодируемыми генами бактерии. Этот мутуализм в форме кооперативной регуляции активности генов создает оптимальные условия для вирулентности и пенетрантности бактерии (Davis, Waldor, 2003; McLeod et al., 2005). Нитчатые фаги сильно отличаются от образцовых фагов, с которыми мы познакомились в главе 2, от хвостатого фага. Эффективное инфицирование нитчатыми фагами не приводит к лизису и смерти клетки-хозяина. Напротив, после репликации и сборки дочерних вирусных частиц они секретируются из клетки через кодируемый бактериальной клеткой поровый белковый комплекс. В отличие от литических фагов CTXФ может активно реплицироваться внутри холерного вибриона и продуцировать дочерние фаги, не убивая клетку-хозяина (Faruque, Albert, Mekalanos, 1998). Процесс индукции фага CTXФ также отличается особенностями: она происходит без вырезания профага из хромосомы клетки-хозяина. Следовательно, лизоген CTXФ может индуцироваться, вступать в репликативный цикл и высвобождать дочерние частицы фага, сохраняя одновременно и клетку-хозяина и профаг. Таким образом, CTXФ может осуществлять лизогению и реплицироваться как часть бактериального генома, а также одновременно инфицировать и другие клетки, высвобождая из клетки-хозяина новые вирусные частицы. Таким образом, генетическая информация может распространяться как вертикально, так и горизонтально между клетками-хозяевами. Фаги такого типа могут съесть пирог и одновременно сохранить его.

В этой драме есть и мощный помощник. Это тоже фаг, близкий сородич CTXФ, называемый RS1, который часто обнаруживают включенным в ДНК клетки-хозяина рядом с профагом CTXФ (Faruque et al., 2002; Davis, Waldor, 2003). Правда, RS1, в отличие от CTXФ, является дефектным фагом и не имеет полного набора генов, необходимых для осуществления его репликации и сборки новой вирусной частицы. Действительно, RS1 не кодирует структурные вирусные белки. Вместо этого он – для упаковки своего генома – использует вирусные частицы, синтезированные фагом CTXФ. Это добавочный фаг, который паразитирует на CTXФ. Фаг RS1 так часто обнаруживают вместе с CTXФ в патогенных холерных вибрионах, что ученые предположили, что присутствие его дает лизогену какое-то конкурентное преимущество, и оказались правы. Белок, продуцируемый RS1, а не фагом CTXФ, может регулировать экспрессию генов, кодирующих холерный токсин в профаге CTXФ. RS1 полезен для лизогена CTXФ, потому что его гены способствуют успешной передаче бактериального патогена новым хозяевам. Естественный отбор, действующий на геном CTXФ, благоприятствует сохранению паразитизма RS1, так как гены CTXФ реплицируются более успешно в условиях более массивного распространения вибрионов во время эпидемий.

Приобретение лизогенных фагов и последовательностей чужеродной ДНК холерным вибрионом исключительно важно для его патогенности и эпидемического потенциала. Находящийся во внешней среде холерный вибрион не обладает токсическими генами и не вызывает заболевания, и это позволяет предположить, что сама по себе способность секретировать токсин не дает бактерии никаких эволюционных преимуществ в ее обычной, морской среде обитания (Faruque, Albert, Mekalanos, 1998). Однако лизогены холерного вибриона, обладающие генами, кодирующими токсин, имеют конкурентные преимущества, позволяющие им колонизировать новую нишу – кишечник человека. Гены холерного токсина опосредованно вызывают сильный понос, то есть способствуют более успешной передаче возбудителей холеры от одного хозяина другому. Более того, поскольку нитчатые фаги не вызывают лизиса клеток-хозяев, постольку эти клетки не погибают во время репликации фага и продукции частиц фага. Для бактерии здесь вообще отсутствует «неприятная изнанка». Фаги получают преимущества при сохранении жизнеспособности клеток-хозяев и при усилении вирулентности и заразительности. Генетическая информация фага, распространяющаяся во время эпидемий холеры, имеет больше возможности для размножения, освоения новых хозяев и достижения своих эгоистичных целей.

Происхождение генов холерного токсина, CtxAB, остается неясным. Происходят ли они из фагового или бактериального метагенома? Мы знаем, что предковые формы CTXФ не имели генов токсина, так как были обнаружены естественные нетоксичные вибрионы, лизогенизированные фагом CTXФ, не имеющим кластера генов, кодирующих токсин (Boyd, Heilpern, Waldor, 2000). Таким образом, представляется вполне вероятным, что CTXФ приобрел гены токсина при трансдукции, когда невероятная на первый взгляд рекомбинация включила сегмент ДНК клетки-хозяина или другого фага в его геном. Эти наблюдения показывают, что конверсия фага холерного вибриона происходила множество раз, каждый раз независимо, и что холерный вибрион служит естественным хозяином этого фага. Наблюдавшаяся в этом случае полная трансдукция является характерным эволюционным приемом для фагов. Гены токсина благотворны для фага, так как позволяют ему распространяться в среде, в которой он в противном случае не смог бы зацепиться. В данном случае вирулентность и болезнетворные свойства идут рука об руку с давлением отбора и создают чрезвычайно эффективный переносчик заболевания, выкованный в ходе деятельности бесчисленных поколений, ускоренной вмешательством фага.

 

Выберите свой яд

Подобно безвредным морским бактериям – холерным вибрионам, обитающим в морских экологических нишах, кишечная палочка неприметно обитает в желудочно-кишечном тракте многих млекопитающих, не принося никакого вреда хозяину. Патогенные штаммы кишечной палочки также возникают в результате конверсии фага, а затем вызывают многочисленные заболевания: чаще всего это диарея вследствие поражения кишечника, но кишечная палочка может поражать также мочеполовой и дыхательный тракт. Здесь мы обсудим энтерогеморрагическую кишечную палочку, которую чаще всего обнаруживают в говяжьем фарше. Энтерогеморрагическая кишечная палочка вызывает у человека тяжелое заболевание: кровавый понос, геморрагический колит и гемолитический уремический синдром. Виновником всех этих несчастий является штамм кишечной палочки 0157-Н7, впервые выделенный в 1982 году. Этот штамм вызывал зоонозы и передавался через зараженную пищу (Riley et al., 1983). Кишечная палочка 0157-Н7 чаще всего обитает в кишках других видов: крупного рогатого скота и других копытных животных. Патогенной она становится, только попадая в кишечник человека из зараженной пищи или воды. Патогенные штаммы кишечной палочки, каковых существует великое множество, снабжены разнообразными кластерами вирулентных генов, но необычно тяжелое заболевание, вызываемое кишечной палочкой 0157-Н7, обусловлено продукцией токсинов Шига. Кишечная палочка 0157-Н7 получает гены токсина, Stx1 и Stx2, в результате конверсии фага после инфицирования хвостатым двухцепочечным ДНК-содержащим фагом (O’Brien et al., 1984). Болезнь развивается в результате выделения токсина в просвет кишечника. Токсин беспрепятственно поступает в клетки слизистой оболочки кишечника, где нарушает механизмы синтеза белка, что приводит к гибели клеток и некрозу тканей. Часть токсина проникает в системный кровоток и поражает восприимчивые клетки и органы, в частности почки, что и приводит к гемолитическому уремическому синдрому и возможной почечной недостаточности. Для инфекционного агента, каковым является кишечная палочка 0157-Н7, обладание генами токсина – весьма выгодный признак. Так же как и при холере, понос способствует передаче бактерий новым хозяевам. Конечно, эти преимущества для бактерии являются одновременно преимуществами для лизогенного фага.

У лизогена кишечной палочки существует один большой недостаток. Токсины Шига могут продуцироваться бактерией 0157-Н7 только во время литической репликации фага. Продукция токсина, следовательно, связана с индукцией профага и лизисом клетки (Wagner et al., 2001; Wagner, Waldor, 2002). Таким образом, диарея, необходимая для распространения болезни, возникает за счет патогенных лизогенов кишечной палочки. Для каждой отдельной кишечной палочки это несчастье, но индуцируются не все ее лизогены, и распространение жизнеспособных генетически идентичных лизогенизированных палочек 057-Н7 гарантируется сильным поносом, вызываемым токсином. Так же как при холере, вероятность успешной передачи патогена другим хозяевам повышается параллельно с усилением диареи. Есть и другие феномены, играющие роль в заболеваниях, вызываемых патогенными штаммами кишечной палочки. Полагают, что индукция фага и высвобождение инфекционных частиц играют роль в усугублении болезни благодаря началу литического инфицирования других бактерий кишечника. Эти клетки, в свою очередь, тоже начинают высвобождать токсин Шига (Mills et al., 2013; Gamage, Strasser, Chalk, 2003). Таким образом, обладание лизогенным фагом является бомбой замедленного действия для бактерий, в которых происходит индукция, но в целом это обладание полезно для бактериальной популяции, так как повышает успешность ее размножения и передачу в человеческой популяции.

Наличие профагов в геномах бактерий может быть обоюдоострым мечом. Исследования показывают, что спонтанная реактивация профага в популяции лизогенных бактериальных клеток может происходить с невысокой, но довольно значительной частотой. В каждый данный момент индукция происходит в 1 на 1000 до 1 на 10 000 бактериальных клеток в культуре. Это фатальное событие в жизни ничтожного меньшинства популяции, но сам факт, что многие линии бактерий стабильно ассоциированы с индуцибельными профагами, позволяет предположить, что в этом заключается определенное преимущество для клеток-хозяев. Энтерогеморрагическая кишечная палочка обладает всеми этими свойствами. Индуцибельный профаг ведет себя, по сути, как ген хозяина, чей фенотип обусловливает самоубийство некоторых индивидов. Однако гены фага определяют и другой феномен – секрецию токсина. Этот фенотип некоторых индивидов полезен для всей популяции, имеющей в геноме индуцибельный профаг.

Тяжесть заболевания, вызываемого энтерогеморрагической кишечной палочкой, коррелирует с частотой индукции. Чем больше токсина выделяется, тем сильнее повреждение слизистой оболочки кишечника. Несмотря на то что индукция профагов происходит спонтанно и с низкой частотой, она усиливается в условиях стресса для бактериальных клеток. Такой ответ благотворен для генов фага, которые рискуют погибнуть в мертвой бактерии. Действительно, такое часто происходит во время заболевания. Среди условий, индуцирующих профаги, немалую роль играет активная форма кислорода, высвобождаемая иммунокомпетентными клетками в ответ на инфекцию (Wagner, Acheson, Waldor, 2001). Лечение фторхинолоновыми антибиотиками подавляет репликацию бактериальной ДНК и вызывает повреждение ДНК хромосомы, что продуцирует у фагов SOS-ответ, индукцию и выделение токсина (Zhang et al., 2000; Ubeda et al., 2005; De Paepe et al., 2014; Maiques et al., 2006). Существует много данных о том, что антибиотики стимулируют продукцию токсина клетками энтерогеморрагической кишечной палочки, и, следовательно, неудивительно, что лечение антибиотиками может ухудшить течение заболевания (Wong et al., 2000; Zhang et al., 2000). По этой причине при геморрагическом колите воздерживаются от введения антибиотиков и ограничиваются поддерживающей терапией.

В наши дни случаи заболеваний, вызванных энтерогеморрагической кишечной палочкой, и вспышки инфекции палочкой штамма 0157-Н7 встречаются редко. Большую часть времени бактерия (вместе со своим пассажиром фагом) реплицируется в организме своего естественного хозяина, чаще всего в кишечнике жвачного животного, у которого она никогда не вызывает заболеваний. Но если бактерия воспроизводится здесь, не причиняя хозяину никакого вреда, то содержит ли она в природе кодирующие токсин профаги, которые для нее являются бомбой замедленного действия, ядовитой пилюлей, реактивация которой грозит бактерии смертью? Представляется, что если подавляющее большинство палочек 0157-Н7 реплицируется в организмах крупного рогатого скота и вызывающий болезнь токсин Шига не играет роли в их репликативном успехе, то, значит, им нет никакой пользы от профага. Следовательно, должно быть какое-то положительное давление естественного отбора, которое заставляет палочку 0157-Н7 сохранять профаг в условиях главного резервуара своего вида. Сравнительное исследование множества бактериальных геномов показало, что они чаще всего содержат значительное число профагов, но это всего лишь дефектные или фрагментарные остатки некогда нормально функционировавших профагов (Kuo, Ochman, 2010; Lawrence, Hendrix, Casjens, 2001). Из этого наблюдения можно вывести, что естественный отбор часто благоприятствует бактериальным геномам, в которых многие профаги нейтрализованы и неспособны активироваться. Бактерии часто получают пользу от конверсии фагов, но не сохраняют функционально активные профаги и их способность к индукции, причиняющей клетке смерть. Индукция фага, как правило, ограниченная немногими клетками популяции, может происходить с высокой скоростью и частотой в условиях, когда клетка-хозяин подвергается стрессовому воздействию. Поскольку каждая бактериальная клетка может содержать множество профагов, постольку легко видеть, что должно быть сильным давление отбора, направленное на их инактивацию, если нет противоположно направленного давления, заставляющего сохранять функциональность профагов. В случае палочки 0157-Н7 ученые считают, что токсины Шига обеспечивают преимущество в выживании бактерий, обитающих в кишечнике крупного рогатого скота (Steinberg, Levin, 2007). Полагают, что обладание токсинами Шига защищает бактерии от пастбищного зоопланктона, который тоже обитает в кишечнике пастбищных животных. Если это действительно так, то появление этих патогенных токсикогенных кишечных палочек у человека – лишь результат неудачного совпадения и наследство борьбы за существование и за эволюционные преимущества в выживании в естественной нише – в кишечнике крупного рогатого скота.

Острова сокровищ

Золотистый стафилококк (Staphylococcus aureus) – широко и печально известный бактериальный патоген, который за десятилетия, прошедшие после начала эры антибиотиков, успешно приобрел целый набор генов, определяющих устойчивость к ним, что заставило сдать в архив множество антибактериальных препаратов, которыми некогда лечили заболевания, вызванные этим весьма активным микроорганизмом. Устойчивые к метициллину золотистые стафилококки стали одним из самых опасных грамположительных возбудителей, способных вызывать тяжелые и угрожающие смертью поражения в госпиталях и вне их стен. Помимо устойчивости к таким бета-лактамным антибиотикам, как метициллин, они часто приобретают поливалентную устойчивость вместе с сонмом вирулентных факторов, связанных с повышенной патогенностью и способствующих их более успешному размножению в организмах пациентов (Gordon, Lowy, 2008; Otto, 2010). Эти вирулентные, устойчивые к метициллину штаммы золотистого стафилококка распространились теперь по всему миру и часто становятся виновниками вспышек стафилококковой инфекции в больницах, воинских частях и детских учреждениях. Особенно опасны вспышки такой инфекции в больницах, где она может оказаться смертельной для ослабленных пациентов. Сегодня количество устойчивых к антибиотикам и высоковирулентных бактериальных патогенов достигло критического уровня. Главный вызов общественному здравоохранению заключается в способности бактерий претерпевать быстрые приспособительные эволюционные изменения при столкновении с антибактериальными лекарственными средствами. Золотистый стафилококк обладает этими способностями в избытке. Основная проблема заключается в отборе устойчивых к лекарствам штаммов и штаммов с усиленными или измененными болезнетворными свойствами. Эти эволюционные приспособления возникают вследствие мутаций и изменений бактериального генома, но более важная причина заключается во включении новой генетической информации, приобретенной путем горизонтального переноса генов из родственных и неродственных бактериальных геномов.

В то время как холерный вибрион и кишечная палочка становятся более вирулентными в результате получения новой генетической информации с фагами, штаммы золотистого стафилококка развиваются и изменяются вследствие приобретения дополнительных генетических элементов. Эти носители, каждый из которых часто встречается в бактериальном метагеноме, варьируют от профагов, плазмид, транспозонов до островков патогенности (Baba et al., 2002; Kuroda et al., 2001). Эти носители в совокупности можно считать содержащими «мобилому», библиотеку мобильного генетического материала, который может с замечательной легкостью обмениваться между родственными и неродственными видами бактерий. Мобилома имеет особую ценность для передающихся патогенных бактерий, которые постоянно подвергаются меняющемуся давлению отбора в организмах разных хозяев, а также испытывают воздействия разнообразной антибактериальной терапии. Фаги, плазмиды и островки патогенности являются превосходными носителями генетического разнообразия, так как могут переносить целые гены и генные кластеры между бактериями. Сложные фенотипические признаки могут, таким образом, приобретаться в результате одного, мгновенно происходящего события. Плазмиды уникальны среди этих медиаторов горизонтального переноса генов тем, что не образуют инфекционных внеклеточных форм, опираясь на конъюгацию клеток для мобилизации и переноса. Как таковые плазмиды не считаются вирусами. То, что мы не станем обсуждать их, нисколько не умаляет их важную роль в генетическом обмене между бактериальными клетками.

Фаги отвечают за поддержание микробного разнообразия, и именно они несут главную часть вины за усиление патогенности бактерий в результате конверсии фагов. Фаги облегчают адаптацию к новым хозяевам и новым условиям окружающей среды, поставляя в клетки ассоциированную с ними генетическую информацию, которая включается в хромосому клетки-хозяина. Это включение может стать основой селективного преимущества, если говорить об успешной репликации, для генома бактерии, а также и для ДНК самого фага, который эгоистично пользуется побочным преимуществом репликативного успеха своего хозяина. Фаги едут дальше вместе с геномом хозяина, но могут, время от времени, овладеть полем и стать литическими, в надежде на большой выигрыш, на обретение нового хозяина, где, вероятно, можно будет реплицировать свой геном еще быстрее.

 

Островки патогенности – это мобильные генетические элементы, обнаруживаемые в геномах большого числа как грамположительных, так и грамотрицательных бактерий (Novick, Christic, Penades, 2010). Островки патогенности содержат крупные кластеры генов и множество тысяч пар оснований ДНК. Появление столь многих патогенных штаммов золотистого стафилококка за такой короткий период демонстрирует мощное влияние островков патогенности на ее проявления у бактерий. Эти генные кассеты обрамлены повторяющимися последовательностями ДНК и кодируют интегразы, напоминающие таковые умеренных фагов, то есть фагов, которые превращают бактериальные клетки в лизогенные. Этот массивный набор генов кодирует белки с широким диапазоном функций, включая устойчивость к лекарствам, а также содержит гены вирулентности, кодирующие токсины, суперантигены, а также и другие новые генные продукты. Это самостоятельная и весьма ценная генетическая валюта островков патогенности. Их получение бактерией может позволить ей немедленно экспрессировать множество новых генов, что обеспечивает клетку-реципиента новым фенотипом, на который может воздействовать естественный отбор. Распространение островков как паразитов бактериальных геномов зависит от конкурентного преимущества, обеспечиваемого их генетическим грузом, и именно этот груз делает островки столь важным катализатором адаптивной эволюции бактерий. Главным фактором успеха является мобильность островков, и – вы угадали – главным фактором их мобильности являются фаги!

Островки патогенности – это самостоятельно и независимо развивающиеся эгоистичные генетические элементы, которым для того, чтобы поддерживать свой жизненный цикл, приходится паразитировать на фагах. В этом отношении они подпадают под данное мною широкое определение вирусов. Островок патогенности можно считать окончательным лизогеном. У островков отсутствуют гены, обеспечивающие их мобильность, и им приходится опираться на помощь «хелперного вируса», для того чтобы завершить свой независимый репликативный жизненный цикл (Ram et al., 2012; Tormo-Mas et al., 2010). Инфицирование фагом или индукция фага в клетке-хозяине островков активирует патогенные островки – их гены начинают репликативный цикл и мобилизацию. ДНК островков патогенности вырезается из хромосомы клетки-хозяина, с формированием кольцевидного генома, который реплицируется под влиянием ферментов синтеза ДНК клетки-хозяина. С этого момента продуцируется еще больше генных продуктов островка патогенности, что позволяет использовать структурные белки хелперного фага для построения инфекционных вирусных частиц, содержащих их геном. Эти вирусные частицы продуцируются в больших количествах и являются носителями эффективного горизонтального транспорта генов островков патогенности между бактериями. Репликация островка патогенности разрушительно действует на хелперный фаг, который не способен эффективно продуцировать свои собственные вирионы перед лицом активированного паразита. Это подавление репродукции хелперного фага называют «парадигмой молекулярного паразитизма». Этот механизм был изучен и охарактеризован в изящных исследованиях островков патогенности золотистого стафилококка и хелперного фага 80α (Ram et al., 2012; Novick, Christic, Penades, 2010). Этот треугольник отношений между клеткой-хозяином, островком патогенности и фагом 80α развился в результате длительного совместного процесса; хотя понятно, что бактериальная клетка получает преимущество от присутствия островка патогенности, который, в свою очередь, получает «товары и услуги» от хелперного фага 80α, но не ясно, почему сам фаг играет в эти игры. Он эгоист, и давление естественного отбора, как ожидается, должно повышать его шансы на успешность репликации. Оказывая помощь паразитическому островку патогенности, он вредит этой основополагающей цели, так как в результате репликация фага 80α страдает и образуется меньше инфекционных частиц. Тем не менее было обнаружено множество случаев подобных взаимоотношений, включая различные островки патогенности, использующие разные виды фагов. Поскольку все эти отношения представляются эволюционно стабильными, мы должны заключить, что геном хелперного фага извлекает какое-то репликативное преимущество из этого «любовного» треугольника. Можно утверждать, что уменьшение литической плодовитости фага многократно перевешивается увеличением и здоровьем бактериальной клеточной популяции, что увеличивает число доступных новых хозяев.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35 
Рейтинг@Mail.ru