bannerbannerbanner
Sapiens на диете. Всемирная история похудения, или Антропологический взгляд на метаболизм

Герман Понцер
Sapiens на диете. Всемирная история похудения, или Антропологический взгляд на метаболизм

Инопланетяне внутри: митохондрии и кислородная радость

В непостижимой длительности естественного отбора маловероятные события становятся рутиной. Подумайте о шансах быть пораженным молнией – 1 к 700 000 (и это только для человека, живущего в Соединенных Штатах). Если вы доживете до семидесяти лет, ваши шансы все еще обнадеживающе низки – 1 к 10 000. Но что, если бы вы прожили три миллиарда лет, наблюдая, как развивается жизнь на Земле? С течением времени вы можете ожидать, что молния ударит в вас более 4200 раз.

Эти цифры еще труднее осознать, когда мы рассматриваем эволюцию среди кишащих микроскопических орд бактерий и других одноклеточных организмов. В 30 граммах «чистой» питьевой воды содержится более миллиона бактерий, а на планете около 1,39 млрд км3 воды. Таким образом, общее число переносимых водой микроорганизмов на Земле (игнорируя те, которые живут на суше) составляет около 40×1027, или 40 с 27 нулями в конце. Даже если они размножаются только один раз в день, это 14×1030 повторений в год. Какова вероятность возникновения случайной мутации, которая изменяет метаболический путь, превращая некое ранее непригодное химическое вещество в источник пищи? Даже если шанс составляет один к ста триллионам, мы можем ожидать более 100 000 триллионов таких мутаций каждый год. В течение миллионов лет эволюционного развития такие изменения почти неизбежны.

И поскольку молодая Земля медленно и постепенно наполнялась ядовитым кислородом в течение многих эпох, то такая возможность, безусловно, была. Среди бесчисленных квадриллионов бактерий, живущих, мутирующих и размножающихся на протяжении миллиардов лет, некоторые нашли, казалось бы, невозможное решение – способ использовать кислород для производства энергии (также этот процесс называется окислительным фосфорилированием). Перемещение электронов в межмембранное пространство и обратно позволило микроорганизмам обратить процесс фотосинтеза вспять, используя кислород для разрыва связей глюкозы, высвобождая накопленную солнечную энергию, содержащуюся внутри. Отходами в данном случае были СО2 и вода – главные ингредиенты для фотосинтеза.

Это было знаковым событием в эволюции жизни. Аэробный метаболизм открыл новые горизонты, иной способ получать энергию. Бактерии, использующие кислород, распространились по всей планете, трансформируясь в новые виды и семейства. Вскоре они были повсюду.

Затем произошло еще одно невероятное событие. В раннем порочном клеточном мире, когда одна клетка поглощала другую, размножающиеся аэробные бактерии были бы восхитительным пунктом меню. Когда клетка поглощает другую (будь то амеба в ручье на заднем дворе, пожирающая инфузорию туфельку, или иммунная клетка в кровотоке, убивающая вторгшуюся бактерию), она «съедает» свою добычу и жертва попадает внутрь мембраны поглотившей ее клетки, где в дальнейшем распадется и превращается в энергию. Но, поскольку бесчисленные миллиарды аэробных бактерий были поглощены за сотни миллионов лет, только небольшая горстка (возможно, лишь одна или две) избежала уничтожения. Вместо этого, вопреки всему, они выжили, остались целыми и невредимыми, продолжая жить в своем новом хозяине. Их можно даже сравнить с пророком Ионой, который был проглочен китом и жил в его чреве.

И это сработало блестяще.

Эти химерные клетки имели преимущества перед другими в океанах нашей планеты. Имея на борту специальную бактерию, производящую энергию, эти гибридные клетки превосходили других в борьбе за превращение энергии в потомство. Наличие внутреннего бактериального двигателя стало нормой. Каждое животное на Земле сегодня, от червей до осьминогов и слонов, пользуется результатами этого великого скачка эволюции. Как и другие животные, мы тоже являемся носителями потомков тех спасительных аэробных бактерий в наших клетках. Это митохондрии.

Революционную идею о том, что митохондрии развились из симбиотических бактерий, поддержала Линн Маргулис, дальновидный эволюционный биолог. Ученые еще в XIX веке признали визуальное сходство между митохондриями и микроорганизмами, которые они рассматривали через микроскоп, и предположили возможность бактериального происхождения этих органелл, но именно Маргулис первой дала этой идее жизнь. В 1960-х годах она написала эпохальную статью, посвященную этой теории. Более дюжины журналов отказались от ее публикации, потому что посчитали текст возмутительным, но исследовательница не сдавалась. В последующие десятилетия стало ясно, что абсурдная идея Маргулис была абсолютно верной.

Митохондрии внутри клеток сохраняют собственную странную петлю ДНК – предательский след их бактериального прошлого. И мы покорно кормим их и ухаживаем за ними, как за драгоценными домашними животными, наше сердце и легкие снабжают митохондрии кислородом и забирают отходы CO2 (см. Рис. 2.1). Без них и магии окислительного фосфорилирования мы не смогли бы поддерживать энергетическую экстравагантность, которую считаем само собой разумеющейся. Жизнь никогда не превратилась бы в тот огромный зверинец, который мы видим сегодня.

Кислород является основным ингредиентом окислительного фосфорилирования именно потому, что он похищает электроны – именно эта характеристика делает его таким разрушительным. O2 является конечным акцептором электронов в так называемой цепи переноса, транспортной системе, которая пропускает их вдоль внутренней мембраны митохондрий, вытягивая ионы водорода в межмембранное пространство (см. Рис. 2.1). Без кислорода цепь переноса электронов останавливается, цикл Кребса возобновляется и митохондрии выключаются. Когда электроны соединяются с O2 в конце этого процесса, они притягивают ионы водорода, образуя воду, Н О. Митохондрии образуют больше одной чашки воды в день (около 300 мл) из кислорода, который вы вдыхаете.

Вне конкуренции

На фундаментальном уровне макронутриентов и митохондрий пути и способы производства АТФ у всех животных (включая человека), по существу, одинаковы. Рисунок 2.1 в равной степени применим к тараканам, коровам и жителям Калифорнии. И все же за почти два миллиарда лет, прошедших с тех пор, как на сцену вышли аэробный метаболизм и митохондрии, эволюционировало поразительное множество видов, и все они использовали одну и ту же основную метаболическую структуру. Обмен веществ ускорялся и замедлялся, корректировался и формировался, подпитывая энергией организмы, чтобы они двигались, росли, размножались и восстанавливались. Как мы видели в предыдущей главе, эти метаболические изменения существенным образом повлияли на развитие нашего вида.

Теперь, когда мы понимаем метаболические основы, которые являются базовыми у всех животных, давайте исследуем способы, которыми эволюция сформировала их, чтобы поддержать биоразнообразие. Давайте посмотрим, куда могут доставить нас кислородные двигатели и как они функционируют изо дня в день в реальном мире. Сколько энергии мы действительно расходуем каждый день, и на что она тратится? Сколько энергии нужно, чтобы пройти километр, побороть простуду или родить ребенка? Можем ли мы действительно ускорить метаболизм с помощью кофе, диеты или суперфудов? Как нашему организму удается обеспечить необходимое количество топлива для удовлетворения ежедневных потребностей? И почему метаболические двигатели изнашиваются и выходят из строя? Является ли смерть неизбежной ценой сжигания калорий, сделкой с дьяволом за возможность танцевать среди живых?

И самое главное: как много нужно пробежать, чтобы избавиться от чувства вины из-за съеденного пончика?

Глава 3
Чего мне это будет стоить?

Глубоко в лесу, примерно в получасе езды от Бостона, на территории списанного ракетного полигона времен Холодной войны, расположен тайный зверинец странных существ, где серьезные исследователи трудятся над разгадкой тайны жизни. Это гарвардская полевая станция – наполовину старая ферма Новой Англии и наполовину лаборатории безумного ученого. Когда осенние листья танцуют свой последний танец, эму расхаживают по пастбищам, как сварливые динозавры, а валлаби[20] прыгают в траве поблизости. Козы и овцы на холме кажутся типичным пастушьим стадом, но обратите внимание на маленькие черные коробочки на их ошейниках, регистрирующие каждое движение, как бортовые самописцы в самолете. Внутри низких зданий из цементных блоков вы найдете цесарок на миниатюрных беговых дорожках или лягушек, прыгающих с крошечных инструментальных платформ для измерения ускорения. Летучие мыши и птицы носятся по коридорам, а аспиранты с передозировкой кофеина и высокоскоростные инфракрасные камеры наблюдают, как они мечутся и маневрируют.

Это было в конце лета 2003 года, когда за плечами у меня была уже половина докторантуры в милом моему сердцу Гарварде. Я тогда изучал все тонкости измерения расхода энергии для диссертации. До сих пор помню первые несколько недель работы на полевой станции – тогда я чувствовал себя новичком, неподготовленным стажером в секретной лаборатории в стиле Джеймса Бонда (если бы программа 007 была о животных, а не супер-злодеях, конечно). Козы в Северном загоне, беговая дорожка за этой дверью, кислородные анализаторы на тележке. Удачи, постарайся ничего не сломать и не забудь убрать козье дерьмо. В некоторые дни, особенно тяжелые, было трудно понять разницу между погруженным изучением и ощущением того, что я реально тону. И мне это нравилось.

Я провел все утро, пытаясь заставить собаку по кличке Оскар двигаться на беговой дорожке и измеряя энергию, которую он расходовал при обычной ходьбе и беге. Для проведения исследования мне приходилось надевать собакам на голову большую прозрачную пластиковую маску – импровизированный шлем астронавта, сделанный из трехлитровой бутылки содовой, – чтобы выдыхаемый воздух попал точно в кислородный анализатор. Оскар – питбуль, мы взяли его из приюта, он был верным спутником моей сокурсницы Моники и так любил беговые дорожки, что иногда это было больше похоже на манию. Тогда помогало только то, что я размазал хот-дог по внутренней стороне его маски. Кабинет Моники находился чуть дальше по коридору от лаборатории с беговыми дорожками, и она должна была удостовериться, что Оскар был внутри за закрытой дверью всякий раз, когда другая собака занимала беговую дорожку, чтобы питбуль не приревновал.

 

То, что начиналось как невинный проект измерения затрат энергии на ходьбу и бег у людей, собак и коз, выросло в своего рода профессиональную одержимость этим показателем. Вскоре я отправился в Калифорнию, где в то время проводили эксперимент по измерению количества энергии, затрачиваемой шимпанзе при ходьбе на двух или четырех лапах. Затем – исследования людей, бегущих со скрещенными на груди руками. Мы пытались понять энергетическое преимущество размахивания руками (оно крошечное). Дейв Райхлен, Брайан Вуд и я провели лето 2010 и 2015 годов в племени хадза. У нас была портативная метаболическая лаборатория, благодаря которой мы могли измерять энергетические затраты охотников и собирателей во время ходьбы, лазания по деревьям, рубки пчелиных гнезд и выкапывания клубней. В прошлом году я также работал с Масахиро Хориути и его коллегами в Японии, чтобы рассчитать энергию, потребляемую с каждым вдохом и ударом сердца.

Вы можете подумать, что такие странные интересы делают меня чужаком, может быть, даже изгоем. Но в университетах по всему миру есть лаборатории, занимающиеся измерением энергетических затрат. Это яркая, хотя и эклектичная область на стыке биологии и медицины. По этой теме ежегодно проводятся конференции. Но если я скажу, что не одинок в своей одержимости, то это будет выглядеть еще более странным. Зачем кому-то посвящать свою карьеру измерению того, во сколько энергии что обойдется?

В экономике жизни калории – это валюта. Ресурсы всегда ограничены, и энергию, потраченную на одну задачу, нельзя израсходовать на другую. Эволюция – это бессердечный бухгалтер: единственное, что имеет значение в конце жизни, – это сколько выживших потомков осталось. Организмы, которые сжигают калории неразумно, в глазах естественного отбора будут размножаться меньше. Следующее поколение будет состоять из потомства от осторожных родителей, которые владеют стратегическим планированием, – тех, кто лучше всего добывал энергию и распределял эти калории наиболее эффективно. Поскольку физиология и поведенческие тенденции передаются по наследству, эти дети будут склонны сжигать калории, как их родители. Это новое поколение снова вступает в игру, но в этом раунде более жесткая конкуренция. Наименее эффективные конкуренты отсеиваются. На протяжении эонов[21] организмы, оставшиеся в живых, – это те, у кого есть тонко настроенные стратегии получения и расходования калорий. Каждый вид представляет собой определенную метаболическую стратегию, откалиброванную в соответствии с его средой обитания. Последний ход в этой бесконечной игре жизни.

Хотите узнать, как эволюция сформировала физиологию вида? Желаете понять, как различные задачи распределяются по приоритетам или сортируются в трудные времена? Следите за калориями.

На плечах гигантов

Ничто не могло быть более очевидным, чем потребность в еде и дыхании, однако все равно нужно было много времени, чтобы создать науку о метаболизме. Понимание и формулирование каждой детали, которую мы рассмотрели в Главе 2, слова и стрелки на рисунке 2.1, заняли у кого-то – или, чаще, у нескольких человек – годы.

Эта наука появилась более двух столетий назад.

Первые прорывы в понимании метаболизма произошли в середине и конце XVIII века, когда исследователи в Европе и Америке открыли роль кислорода и пищи. Ученые той эпохи, как и все остальные с незапамятных времен, знали, что люди и другие животные должны есть и дышать, чтобы выжить. Исследователи даже установили связь между огнем и обменом веществ, признав, что тела людей и других млекопитающих вырабатывают тепло. Однако детали до сих пор были достаточно размытыми. Никто не знал, что именно из воздуха нам нужно или как организм использует пищу. Ничего из того, о чем мы говорили во второй главе, еще не было известно.

Не помогло и то, что ранние исследования обмена веществ проводились на основе ретроградных взглядов о строении мира. Когда началась эпоха Просвещения и в XVII веке начала зарождаться современная западная наука, сложилось следующее общее мнение: мы не получаем ничего важного из воздуха. Вместо этого ученые полагали, что тепло тела (а также жар от огня) представляет собой субстанцию (они называли ее флогистоном), которая испаряется. Считалось, что флогистон был основной составляющей всех горючих веществ, которая делала их огнеопасными, высвобождаясь при горении. Воздух поглощал флогистон, но вмещал его не так уж много. Вот почему свеча гаснет, когда на нее ставят сосуд: как только воздух внутри насыщается флогистоном, он больше не может высвобождаться, и огонь затухает.

Кислород был открыт химиком Джозефом Пристли только в 1774 году. Он называл его дефлогистированным воздухом, полагая, что это очищенная форма воздуха, без флогистона. Пристли представил это вещество коллеге, химику Антуану Лавуазье, во время визита в Париж. Они оба были очарованы процессом горения. Лавуазье, которого многие считали отцом современной химии, отверг идею о том, что воздух Пристли был дефлогистирован. Вместо этого ученый утверждал, что газ является самостоятельным веществом, и назвал его кислородом, или кислотообразующим веществом, за его склонность к краже электронов и окислению (те же свойства, которые делают его столь важным в цепи переноса электронов). Химик первым понял, что для горения нужен кислород. У него было предчувствие, что в живых организмах происходит то же самое.

В 1782 году Лавуазье и Пьер-Симон Лаплас провели гениальный эксперимент, который привел к фундаментальному прорыву в науке о метаболизме. Они поместили морскую свинку в небольшой металлический контейнер и поставили его (с закрытой крышкой, но с отверстиями для дыхания) в большое ведро, частично заполненное льдом. Затем они положили лед по бокам и сверху контейнера, в котором сидела свинка, и открыли слив в нижней части ведра. Определив объем воды, которая вытекала из ведра, они смогли измерить тепло, выделяемое морской свинкой. Лавуазье и Лаплас вычислили соотношение сожженных калорий к количеству CO2, которое вырабатывал грызун, и обнаружили, что тепло, выделяемое свинкой, было равно теплу сжигания дерева или воска от свечи. Лавуазье заключил: «la respiration est donc une combustion» (фр. дыхание – это горение). Это, по существу, означает следующее: метаболизм – это горение.

Представьте себе, что бы обнаружил Лавуазье, если бы его не обезглавили на гильотине во время Французской революции спустя всего пару лет.

Потребовались десятилетия кропотливых экспериментов, показавших, что тепло, выделяемое при сжигании пищи на огне, точно такое же, как и при процессах в организме, и что количество потребляемого кислорода и производимого углекислого газа также одинаково. Установив эти фундаментальные правила, ученые получили два общих подхода к определению расхода энергии: они могли измерять произведенное тепло (называемое прямой калориметрией) или потребление кислорода и производство углекислого газа (называемое косвенной калориметрией). С практической точки зрения, это намного проще, чем измерение тепла. Таким образом, к концу XIX века пионеры в новых областях питания и метаболизма использовали потребление O2 и производство CO2 в качестве основного показателя количества калорий, сжигаемых людьми и животными.

Перенесемся еще на сто лет вперед. Тот же самый подход к определению количества энергии я использовал, измеряя показатели собаки по имени Оскар в двух состояниях: когда он шел и бежал по дорожке. Как вы можете видеть на рисунке 2.1, при сжигании углеводов, жиров и белков потребляется O2 и производится CO2. Измерение потребления кислорода и углекислого газа является стандартным подходом для определения сожженных калорий. O2 и СO2 сами по себе не являются энергией, но настолько тесно связаны с выработкой АТФ и ее расходованием, что выступают надежными и точными показателями работы метаболизма.

Теперь перейдем к тому, что написано мелким шрифтом. Так как O2 и CO2 являются косвенными показателями расхода энергии, есть некоторые важные детали, которые необходимо учитывать при измерении метаболизма с учетом эти показателей. Во-первых, прежде чем организм достигнет устойчивого показателя потребления кислорода и производства углекислого газа, необходимо хотя бы несколько минут активности. Как вам уже известно, если вы регулярно тренируетесь, то дыхание и частота сердечных сокращений не достигают своего среднего ритма, пока вы не будете заниматься этим некоторое время. Короткие всплески активности, такие как бег или поднятие штанги, не длятся достаточно долго, чтобы дать устойчивые показатели, и зависят от анаэробного метаболизма, для которого не нужен кислород, а это затрудняет процесс измерения. Кроме того, количество энергии, расходуемой для потребляемого кислорода или производимого углекислого газа, немного меняется в зависимости от того, сжигаете ли вы больше углеводов, белков или жиров. Удобно, что количество последних можно рассчитать из отношения потребления O2 к производству CO2 (называемого дыхательным обменным коэффициентом, или дыхательным коэффициентом), чтобы определить точный расход энергии.

Несмотря на эти трудности, исследователи изучили энергетические затраты, необходимые для ошеломляющего разнообразия человеческой деятельности. И именно с этими показателями вы сталкиваетесь, когда пользуетесь фитнес-оборудованием и онлайн-калькулятором, которые показывают, сколько калорий вы сожгли. Крутите ли вы педали на велотренажере, пользуетесь умными часами или выбиваетесь из сил во время тренировки – показатель количества сжигаемых калорий основан на измерениях потребления O2 и производства CO2 в какой-то тестовой группе, трудящейся в лаборатории. По крайней мере, это то, на чем должны основываться цифры. Нет никакой метаболической полиции, которая проверяет, обманывают ли нас компании-производители этих устройств или разработчики приложений.

Часто энергетические затраты выражаются в метаболических эквивалентах (MET). Один MET определяется как 1 килокалория на килограмм массы тела в час, грубо говоря, затраты энергии во время отдыха. Существует так называемый «Компендиум физической активности». Он составляется с 1993 года Барбарой Эйнсворт и ее командой и считается авторитетным источником, к которому можно обратиться за тем, чтобы узнать об энергозатратности конкретной деятельности. В нем описаны показания для более чем восьмисот видов активности, от повседневных (печатание на машинке или компьютере, 1,3 MET) до неожиданных (рыбалка с копьем стоя, 2,3 MET) и от любопытно неопределенных (сексуальная активность, общие умеренные усилия, 1,8 MET) до обескураживающе специфических (ходьба задом наперед, со скоростью 5,5 км/час, подъем в гору, 5-ти процентный наклон, 6,0 MET). Я перечислил некоторые общие виды деятельности и их энергозатратность в таблице 3.1.

Таблица 3.1

Энергетические затраты при разных видах активности


20Валлаби – группа видов сумчатых млекопитающих из семейства кенгуровых, как правило, меньших по размеру, чем кенгуру или валлару. – Прим. ред.
21Эон в геологии – отрезок времени геологической истории Земли, длительный этап развития литосферы и биосферы Земли, в течение которого формировалась эонотема. – Прим. пер.
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31 
Рейтинг@Mail.ru