bannerbannerbanner
полная версияThe Variation of Animals and Plants under Domestication — Volume 1

Чарльз Дарвин
The Variation of Animals and Plants under Domestication — Volume 1

OSTEOLOGICAL DIFFERENCES.

I have examined twenty-seven skeletons and fifty-three skulls of various breeds, including three of G. bankiva: nearly half of these skulls I owe to the kindness of Mr. Tegetmeier, and three of the skeletons to Mr. Eyton.

SKULL.

(FIGURE 33. OCCIPITAL FORAMEN, of natural size. A. Wild Gallus bankiva. B. Cochin Cock. FIGURE 34. SKULLS of natural size, viewed from above, a little obliquely. A. Wild Gallus bankiva. B. White-crested Polish Cock.

FIGURE 35. LONGITUDINAL SECTIONS OF SKULL, of natural size, viewed laterally; A. Polish Cock. B. Cochin Cock, selected for comparison with the above from being of nearly the same size.

FIGURE 36. SKULL OF HORNED FOWL, of natural size, viewed from above, a little obliquely. (In the possession of Tegetmeier.))

[The SKULL differs greatly in size in different breeds, being nearly twice as long in the largest Cochins, but not nearly twice as broad, as in Bantams. The bones at the base, from the occipital foramen to the anterior end (including the quadrates and pterygoids), are absolutely identical in SHAPE in all the skulls. So is the lower jaw. In the forehead slight differences are often perceptible between the males and females, evidently caused by the presence of the comb. In every case I take the skull of G. bankiva as the standard of comparison. In four Games, in one Malay hen, in an African cock, in a Frizzled cock from Madras, in two black-boned Silk hens, no differences worth notice occur. In three SPANISH cocks, the form of the forehead between the orbits differs considerably; in one it is considerably depressed, whilst in the two others it is rather prominent, with a deep medial furrow; the skull of the hen is smooth. In three skulls of SEBRIGHT BANTAMS the crown is more globular, and slopes more abruptly to the occiput, than in G. bankiva. In a Bantam or Jumper from Burmah these same characters are more strongly pronounced, and the supra-occiput is more pointed. In a black Bantam the skull is not so globular, and the occipital foramen is very large, and has nearly the same sub-triangular outline presently to be described in Cochins; and in this skull the two ascending branches of the premaxillary are overlapped in a singular manner by the processes of the nasal bone, but, as I have seen only one specimen, some of these differences may be individual. Of Cochins and Brahmas (the latter a crossed race approaching closely to Cochins) I have examined seven skulls; at the point where the ascending branches of the premaxillary rest on the frontal bone the surface is much depressed, and from this depression a deep medial furrow extends backwards to a variable distance; the edges of this fissure are rather prominent, as is the top of the skull behind and over the orbits. These characters are less developed in the hens. The pterygoids, and the processes of the lower jaw, are broader, relatively to the size of the head, than in G. bankiva; and this is likewise the case with Dorkings when of large size. The fork of the hyoid bone in Cochins is twice as wide as in G. bankiva, whereas the length of the other hyoid bones is only as three to two. But the most remarkable character is the shape of the occipital foramen: in G. bankiva (A) the breadth in a horizontal line exceeds the height in a vertical line, and the outline is nearly circular; whereas in Cochins (B) the outline is sub-triangular, and the vertical line exceeds the horizontal line in length. This same form likewise occurs in the black Bantam above referred to, and an approach to it may be seen in some Dorkings, and in a slight degree in certain other breeds.

Of Dorkings I have examined three skulls, one belonging to the white-sub- breed; the one character deserving notice is the breadth of the frontal bones, which are moderately furrowed in the middle; thus in a skull which was less than once and a half the length of that of G. bankiva, the breadth between the orbits was exactly double. Of Hamburghs I have examined four skulls (male and female) of the pencilled sub-breed, and one (male) of the spangled sub-breed; the nasal bones stand remarkably wide apart, but in a variable degree; consequently narrow membrane-covered spaces are left between the tips of the two ascending branches of the pre-maxillary bones, which are rather short, and between these branches and the nasal bones. The surface of the frontal bone, on which the branches of the premaxillary rest, is very little depressed. These peculiarities no doubt stand in close relation with the broad, flattened rose-comb characteristic of the Hamburgh breed.

I have examined fourteen skulls of POLISH AND OTHER CRESTED BREEDS. Their differences are extraordinary. First for nine skulls of different sub- breeds of English Polish fowls. The hemispherical protuberance of the frontal bones (7/68. See Mr. Tegetmeier's account with woodcuts of the skull of Polish fowls in 'Proc. Zoolog. Soc.' November 25, 1856. For other references see Isid. Geoffroy Saint-Hilaire 'Hist. Gen. des Anomalies' tome 1 page 287. M. C. Dareste suspects ('Recherches sur les Conditions de la Vie' etc. Lille 1863 page 36) that the protuberance is not formed by the frontal bones, but by the ossification of the dura mater.) may be seen in figure 34, in which (B) the skull of a white-crested Polish fowl is shown obliquely from above, with the skull (A) of (G. bankiva in the same position. In figure 35 longitudinal sections are given of the skull of a Polish fowl, and, for comparison, of a Cochin of the same size. The protuberance in all Polish fowls occupies the same position but differs much in size. In one of my nine specimens it was extremely slight. The degree to which the protuberance is ossified varies greatly, larger or smaller portions of bone being replaced by membrane. In one specimen there was only a single open pore; generally, there are many variously shaped open spaces, the bone forming an irregular reticulation. A medial, longitudinal, arched ribbon of bone is generally retained, but in one specimen there was no bone whatever over the whole protuberance, and the skull, when cleaned and viewed from above, presented the appearance of an open basin. The change in the whole internal form of the skull is surprisingly great. The brain is modified in a corresponding manner, as is shown in the two longitudinal sections, which deserve attentive consideration. The upper and anterior cavity of the three into which the skull may be divided, is the one which is so greatly modified; it is evidently much larger than in the Cochin skull of the same size, and extends much further beyond the interorbital septum, but laterally is less deep. This cavity, as I hear from Mr. Tegetmeier, is entirely filled with brain. In the skull of the Cochin and of all ordinary fowls a strong internal ridge of bone separates the anterior from the central cavity; but this ridge is quite absent in the Polish skull here figured. The shape of the central cavity is circular in the Polish, and lengthened in the Cochin skull. The shape of the posterior cavity, together with the position, size, and number of the pores for the nerves, differ much in these two skulls. A pit deeply penetrating the occipital bone of the Cochin is entirely absent in this Polish skull, whilst in another specimen it was well developed. In this second specimen the whole internal surface of the posterior cavity likewise differs to a certain extent in shape. I made sections of two other skulls, — namely, of a Polish fowl with the protuberance singularly little developed, and of a Sultan in which it was a little more developed; and when these two skulls were placed between the two above figured (figure 35), a perfect gradation in the configuration of each part of the internal surface could be traced. In the Polish skull, with a small protuberance, the ridge between the anterior and middle cavities was present, but low; and in the Sultan this ridge was replaced by a narrow furrow standing on a broad raised eminence.

It may naturally be asked whether these remarkable modifications in the form of the brain affect the intellect of Polish fowls; some writers have stated that they are extremely stupid, but Bechstein and Mr. Tegetmeier have shown that this is by no means generally the case. Nevertheless Bechstein (7/69. 'Naturgeschichte Deutschlands' b. 3 1793 s. 400.) states that he had a Polish hen which "was crazy, and anxiously wandered about all day long." A hen in my possession was solitary in her habits, and was often so absorbed in reverie that she could be touched; she was also deficient in the most singular manner in the faculty of finding her way, so that, if she strayed a hundred yards from her feeding-place, she was completely lost, and would then obstinately try to proceed in a wrong direction. I have received other and similar accounts of Polish fowls appearing stupid or half-idiotic. (7/70. The 'Field' May 11, 1861. I have received communications to a similar effect from Messrs. Brent and Tegetmeier.)

To return to the skull of Polish fowls. The posterior part, viewed externally, differs little from that of G. bankiva. In most fowls the posterior-lateral process of the frontal bone and the process of the squamosal bone run together and are ossified near their extremities: this union of the two bones, however, is not constant in any breed; and in eleven out of fourteen skulls of crested breeds, these processes were quite distinct. These processes, when not united, instead of being inclined anteriorly, as in all common breeds, descend at right angles to the lower jaw; and in this case the longer axis of the bony cavity of the ear is likewise more perpendicular, than in other breeds. When the squamosal process is free instead of expanding at the tip, it is reduced to an extremely fine and pointed style, of variable length. The pterygoid and quadrate bones present no differences. The palatine bones are a little more curved upwards at their posterior ends. The frontal bones, anteriorly to the protuberance, are, as in Dorkings, very broad, but in a variable degree. The nasal bones either stand far apart, as in Hamburghs, or almost touch each other, and in one instance were ossified together. Each nasal bone properly sends out in front two long processes of equal lengths, forming a fork; but in all the Polish skulls, except one, the inner process was considerably, but in a variable degree, shortened and somewhat upturned. In all the skulls, except one, the two ascending branches of the premaxillary, instead of running up between the processes of the nasal bones and resting on the ethmoid bone, are much shortened and terminate in a blunt, somewhat upturned point. In those skulls in which the nasal bones approach quite close to each other or are ossified together, it would be impossible for the ascending branches of the premaxillary to reach the ethmoid and frontal bones; hence we see that even the relative connection of the bones has been changed. Apparently in consequence of the branches of the premaxillary and of the inner processes of the nasal bones being somewhat upturned, the external orifices of the nostrils are upraised and assume a crescentic outline.

 

I must still say a few words on some of the foreign Crested breeds. The skull of a crested, rumpless, white Turkish fowl was very slightly protuberant, and but little perforated; the ascending branches of the premaxillary were well developed. In another Turkish breed, called Ghoondooks, the skull was considerably protuberant and perforated; the ascending branches of the premaxillary were so much aborted that they projected only 1/15th of an inch; and the inner processes of the nasal bone were so completely aborted, that the surface where they should have projected was quite smooth. Here then we see these two bones modified to an extreme degree. Of Sultans (another Turkish breed) I examined two skulls; in that of the female the protuberance was much larger than in the male. In both skulls the ascending branches of the premaxillary were very short, and in both the nasal portion of the inner processes of the nasal bones were ossified together. These Sultan skulls differed from those of English Polish fowls in the frontal bones, anteriorly to the protuberance, not being broad.

The last skull which I need describe is a unique one, lent to me by Mr. Tegetmeier: it resembles a Polish skull in most of its characters, but has not the great frontal protuberance; it has, however, two rounded knobs of a different nature, which stand more in front, above the lachrymal bones. These curious knobs, into which the brain does not enter, are separated from each other by a deep medial furrow; and this is perforated by a few minute pores. The nasal bones stand rather wide apart, with their inner processes, and the ascending branches of the premaxillary, upturned and shortened. The two knobs no doubt supported the two great horn-like projections of the comb.

From the foregoing facts we see in how astonishing a manner some of the bones of the skull vary in Crested fowls. The protuberance may certainly be called in one sense a monstrosity, as being wholly unlike anything observed in nature: but as in ordinary cases it is not injurious to the bird, and as it is strictly inherited, it can hardly in another sense be called a monstrosity. A series may be formed commencing with the black-boned Silk fowl, which has a very small crest with the skull beneath penetrated only by a few minute orifices, but with no other change in its structure; and from this first stage we may proceed to fowls with a moderately large crest, which rests, according to Bechstein, on a fleshy mass, but without any protuberance in the skull. I may add that I have seen a similar fleshy or fibrous mass beneath the tuft of feathers on the head of the Tufted duck; and in this case there was no actual protuberance in the skull, but it had become a little more globular. Lastly, when we come to fowls with a largely developed crest, the skull becomes largely protuberant and is perforated by a multitude of irregular open spaces. The close relation between the crest and the size of the bony protuberance is shown in another way; for Mr. Tegetmeier informs me that if chickens lately hatched be selected with a large bony protuberance, when adult they will have a large crest. There can be no doubt that in former times the breeder of Polish fowls attended solely to the crest, and not to the skull; nevertheless, by increasing the crest, in which he has been wonderfully successful, he has unintentionally made the skull protuberant to an astonishing degree; and through correlation of growth, he has at the same time affected the form and relative connexion of the premaxillary and nasal bones, the shape of the orifice of the nose, the breadth of the frontal bones, the shape of the post-lateral processes of the frontal and squamosal bones, the direction of the axis of the bony cavity of the ear, and lastly the internal configuration of the whole skull together with the shape of the brain.

VERTEBRAE.

(FIGURE 37. SIXTH CERVICAL VERTEBRA, natural size, viewed laterally. A. Wild Gallus bankiva. B. Cochin cock.)

In G. bankiva there are fourteen cervical, seven dorsal with ribs, apparently fifteen lumbar and sacral, and six caudal vertebrae (7/71. It appears that I have not correctly designated the several groups of vertebrae, for a great authority, Mr. W.K. Parker ('Transact. Zoolog. Soc.' volume 5 page 198) specifies 16 cervical, 4 dorsal, 15 lumbar, and 6 caudal vertebrae in this genus. But I have used the same terms in all the following descriptions.); but the lumbar and sacral are so much anchylosed that I am not sure of their number, and this makes the comparison of the total number of vertebrae in the several breeds difficult. I have spoken of six caudal vertebrae, because the basal one is almost completely anchylosed with the pelvis; but if we consider the number as seven, the caudal vertebrae agree in all the skeletons. The cervical vertebrae are, as just stated, in appearance fourteen; but out of twenty-three skeletons in a fit state for examination, in five of them, namely, in two Games, in two pencilled Hamburghs, and in a Polish, the fourteenth vertebra bore ribs, which, though small, were perfectly developed with a double articulation. The presence of these little ribs cannot be considered as a fact of much importance, for all the cervical vertebrae bear representatives of ribs; but their development in the fourteenth vertebra reduces the size of the passages in the transverse processes, and makes this vertebra exactly like the first dorsal vertebra. The addition of these little ribs does not affect the fourteenth cervical alone, for properly the ribs of the first true dorsal vertebra are destitute of processes; but in some of the skeletons in which the fourteenth cervical bore little ribs the first pair of true ribs had well-developed processes. When we know that the sparrow has only nine, and the swan twenty-three cervical vertebrae (7/72. Macgillivray 'British Birds' volume 1 page 25.), we need feel no surprise at the number of the cervical vertebrae in the fowl being, as it appears, variable.

There are seven dorsal vertebrae bearing ribs; the first dorsal is never anchylosed with the succeeding four, which are generally anchylosed together. In one Sultan fowl, however, the two first dorsal vertebrae were free. In two skeletons, the fifth dorsal was free; generally the sixth is free (as in G. bankiva), but sometimes only at its posterior end, where in contact with the seventh. The seventh dorsal vertebra, in every case excepting in one Spanish cock, was anchylosed with the lumbar vertebrae. So that the degree to which these middle dorsal vertebrae are anchylosed is variable.

Seven is the normal number of true ribs, but in two skeletons of the Sultan fowl (in which the fourteenth cervical vertebra was not furnished with little ribs) there were eight pairs; the eighth pair seemed to be developed on a vertebra corresponding with the first lumbar in G. bankiva; the sternal portion of both the seventh and eighth ribs did not reach the sternum. In four skeletons in which ribs were developed on the fourteenth cervical vertebra, there were, when these cervical ribs are included, eight pairs; but in one Game cock, in which the fourteenth cervical was furnished with ribs, there were only six pairs of true dorsal ribs; the sixth pair in this case did not have processes, and thus resembled the seventh pair in other skeletons; in this Game cock, as far as could be judged from the appearance of the lumbar vertebrae, a whole dorsal vertebra with its ribs was missing. We thus see that the ribs (whether or not the little pair attached to the fourteenth cervical vertebra be counted) vary from six to eight pair. The sixth pair is frequently not furnished with processes. The sternal portion of the seventh pair is extremely broad in Cochins, and is completely ossified. As previously stated, it is scarcely possible to count the lumbo-sacral vertebrae; but they certainly do not correspond in shape or number in the several skeletons. The caudal vertebrae are closely similar in all the skeletons, the only difference being whether or not the basal one is anchylosed to the pelvis; they hardly vary even in length, not being shorter in Cochins, with their short tail-feathers, than in other breeds; in a Spanish cock, however, the caudal vertebrae were a little elongated. In three rumpless fowls the caudal vertebrae were few in number, and anchylosed together into a misformed mass.

In the individual vertebrae the differences in structure are very slight. In the atlas the cavity for the occipital condyle is either ossified into a ring, or is, as in Bankiva, open on its upper margin. The upper arc of the spinal canal is a little more arched in Cochins, in conformity with the shape of the occipital foramen, than in G. bankiva. In several skeletons a difference, but not of much importance, may be observed, which commences at the fourth cervical vertebra, and is greatest at about the sixth, seventh, or eighth vertebra; this consists in the haemal descending processes being united to the body of the vertebra by a sort of buttress. This structure may be observed in Cochins, Polish, some Hamburghs, and probably other breeds; but is absent, or barely developed, in Game, Dorking, Spanish, Bantam, and several other breeds examined by me. On the dorsal surface of the sixth cervical vertebra in Cochins three prominent points are more strongly developed than in the corresponding vertebra of the Game fowl or G. bankiva.

PELVIS.

This differs in some few points in the several skeletons. The anterior margin of the ilium seems at first to vary much in outline, but this is chiefly due to the degree to which the margin in the middle part is ossified to the crest of the vertebrae; the outline, however, does differ in being more truncated in Bantams, and more rounded in certain breeds, as in Cochins. The outline of the ischiadic foramen differs considerably, being nearly circular in Bantams, instead of egg-shaped as in the Bankiva, and more regularly oval in some skeletons, as in the Spanish. The obturator notch is also much less elongated in some skeletons than in others. The end of the pubic bone presents the greatest difference; being hardly enlarged in the Bankiva; considerably and gradually enlarged in Cochins, and in a lesser degree in some other breeds; and abruptly enlarged in Bantams. In one Bantam this bone extended very little beyond the extremity of the ischium. The whole pelvis in this latter bird differed widely in its proportions, being far broader proportionally to its length than in Bankiva.

(FIGURE 38. EXTREMITY OF THE FURCULA, of natural size, viewed laterally. A. Wild Gallus bankiva. B. Spangled Polish Fowl. C. Spanish Fowl. D. Dorking Fowl.)

STERNUM.

This bone is generally so much deformed that it is scarcely possible to compare its shape strictly in the several breeds. The form of the triangular extremity of the lateral processes differs considerably, being either almost equilateral or much elongated. The front margin of the crest is more or less perpendicular and varies greatly, as does the curvature of the posterior end, and the flatness of the lower surface. The outline of the manubrial process also varies, being wedge-shaped in the Bankiva, and rounded in the Spanish breed. The FURCULUM differs in being more or less arched, and greatly, as may be seen in the accompanying outlines, in the shape of the terminal plate; but the shape of this part differed a little in two skeletons of the wild Bankiva. The CORACOID presents no difference worth notice. The SCAPULA varies in shape, being of nearly uniform breadth in Bankiva, much broader in the middle in the Polish fowl, and abruptly narrowed towards the apex in the two Sultan fowls.

 

I carefully compared each separate bone of the leg and wing, relatively to the same bones in the wild Bankiva, in the following breeds, which I thought were the most likely to differ; namely, in Cochin, Dorking, Spanish, Polish, Burmese Bantam, Frizzled Indian, and black-boned Silk fowls; and it was truly surprising to see how absolutely every process, articulation, and pore agreed, though the bones differed greatly in size. The agreement is far more absolute than in other parts of the skeleton. In stating this, I do not refer to the relative thickness and length of the several bones; for the tarsi varied considerably in both these respects. But the other limb-bones varied little even in relative length.]

Finally, I have not examined a sufficient number of skeletons to say whether any of the foregoing differences, except in the skull, are characteristic of the several breeds. Apparently some differences are more common in certain breeds than in others, — as an additional rib to the fourteenth cervical vertebra in Hamburghs and Games, and the breadth of the end of the pubic bone in Cochins. Both skeletons of the Sultan fowl had eight dorsal vertebrae, and the end of the scapula in both was somewhat attenuated. In the skull, the deep medial furrow in the frontal bones and the vertically elongated occipital foramen seem to be characteristic of Cochins; as is the great breadth of the frontal bones in Dorkings; the separation and open spaces between the tips of the ascending branches of the premaxillaries and nasal bones, as well as the front part of the skull being but little depressed, characterise Hamburghs; the globular shape of the posterior part of the skull seems to be characteristic of laced Bantams; and lastly, the protuberance of the skull with the ascending branches of the premaxillaries partially aborted, together with the other differences before specified, are eminently characteristic of Polish and other Crested fowls.

But the most striking result of my examination of the skeleton is the great variability of all the bones except those of the extremities. To a certain extent we can understand why the skeleton fluctuates so much in structure; fowls have been exposed to unnatural conditions of life, and their whole organisation has thus been rendered variable; but the breeder is quite indifferent to, and never intentionally selects, any modification in the skeleton. External characters, if not attended to by man, such as the number of the tail and wing feathers and their relative lengths, which in wild birds are generally constant, — fluctuate in our domestic fowls in the same manner as the several parts of the skeleton. An additional toe is a "point" in Dorkings, and has become a fixed character, but is variable in Cochins and Silk fowls. The colour of the plumage and the form of the comb are in most breeds, or even sub-breeds, eminently fixed characters; but in Dorkings these points have not been attended to, and are variable. When any modification in the skeleton is related to some external character which man values, it has been, unintentionally on his part, acted on by selection, and has become more or less fixed. We see this in the wonderful protuberance of the skull, which supports the crest of feathers in Polish fowls, and which by correlation has affected other parts of the skull. We see the same result in the two protuberances which support the horns in the horned fowl, and in the flattened shape of the front of the skull in Hamburghs consequent on their flattened and broad "rose-combs." We know not in the least whether additional ribs, or the changed outline of the occipital foramen, or the changed form of the scapula, or of the extremity of the furculum, are in any way correlated with other structures, or have arisen from the changed conditions and habits of life to which our fowls have been subjected; but there is no reason to doubt that these various modifications in the skeleton could be rendered, either by direct selection, or by the selection of correlated structures, as constant and as characteristic of each breed, as are the size and shape of the body, the colour of the plumage, and the form of the comb.

[EFFECTS OF THE DISUSE OF PARTS.

Judging from the habits of our European gallinaceous birds, Gallus bankiva in its native haunts would use its legs and wings more than do our domestic fowls, which rarely fly except to their roosts. The Silk and the Frizzled fowls, from having imperfect wing-feathers, cannot fly at all; and there is reason to believe that both these breeds are ancient, so that their progenitors during many generations cannot have flown. The Cochins, also, from their short wings and heavy bodies, can hardly fly up to a low perch. Therefore in these breeds, especially in the two first, a considerable diminution in the wing-bones might have been expected, but this is not the case. In every specimen, after disarticulating and cleaning the bones, I carefully compared the relative length of the two main bones of the wing to each other, and of the two main bones of the leg to each other, with those of G. bankiva; and it was surprising to see (except in the case of the tarsi) how exactly the same relative length had been retained. This fact is curious, from showing how truly the proportions of an organ may be inherited, although not fully exercised during many generations. I then compared in several breeds the length of the femur and tibia with the humerus and ulna, and likewise these same bones with those of G. bankiva; the result was that the wing-bones in all the breeds (except the Burmese Jumper, which has unnaturally short legs, are slightly shortened relatively to the leg-bones; but the decrease is so slight that it may be due to the standard specimen of G. bankiva having accidentally had wings of slightly greater length than usual; so that the measurements are not worth giving. But it deserves notice that the Silk and Frizzled fowls, which are quite incapable of flight, had their wings LESS reduced relatively to their legs than in almost any other breed! We have seen with domesticated pigeons that the bones of the wings are somewhat reduced in length, whilst the primary feathers are rather increased in length, and it is just possible, though not probable, that in the Silk and Frizzled fowls any tendency to decrease in the length of the wing-bones from disuse may have been checked through the law of compensation, by the decreased growth of the wing-feathers, and consequent increased supply of nutriment. The wing-bones, however, in both these breeds, are found to be slightly reduced in length when judged by the standard of the length of the sternum or head, relatively to these same parts in G. bankiva.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39 
Рейтинг@Mail.ru