bannerbannerbanner
полная версияOn the Origin of Species By Means of Natural Selection

Чарльз Дарвин
On the Origin of Species By Means of Natural Selection

In the second place, we may sometimes attribute importance to characters which are really of very little importance, and which have originated from quite secondary causes, independently of natural selection. We should remember that climate, food, etc., probably have some little direct influence on the organisation; that characters reappear from the law of reversion; that correlation of growth will have had a most important influence in modifying various structures; and finally, that sexual selection will often have largely modified the external characters of animals having a will, to give one male an advantage in fighting with another or in charming the females. Moreover when a modification of structure has primarily arisen from the above or other unknown causes, it may at first have been of no advantage to the species, but may subsequently have been taken advantage of by the descendants of the species under new conditions of life and with newly acquired habits.

To give a few instances to illustrate these latter remarks. If green woodpeckers alone had existed, and we did not know that there were many black and pied kinds, I dare say that we should have thought that the green colour was a beautiful adaptation to hide this tree-frequenting bird from its enemies; and consequently that it was a character of importance and might have been acquired through natural selection; as it is, I have no doubt that the colour is due to some quite distinct cause, probably to sexual selection. A trailing bamboo in the Malay Archipelago climbs the loftiest trees by the aid of exquisitely constructed hooks clustered around the ends of the branches, and this contrivance, no doubt, is of the highest service to the plant; but as we see nearly similar hooks on many trees which are not climbers, the hooks on the bamboo may have arisen from unknown laws of growth, and have been subsequently taken advantage of by the plant undergoing further modification and becoming a climber. The naked skin on the head of a vulture is generally looked at as a direct adaptation for wallowing in putridity; and so it may be, or it may possibly be due to the direct action of putrid matter; but we should be very cautious in drawing any such inference, when we see that the skin on the head of the clean-feeding male turkey is likewise naked. The sutures in the skulls of young mammals have been advanced as a beautiful adaptation for aiding parturition, and no doubt they facilitate, or may be indispensable for this act; but as sutures occur in the skulls of young birds and reptiles, which have only to escape from a broken egg, we may infer that this structure has arisen from the laws of growth, and has been taken advantage of in the parturition of the higher animals.

We are profoundly ignorant of the causes producing slight and unimportant variations; and we are immediately made conscious of this by reflecting on the differences in the breeds of our domesticated animals in different countries, – more especially in the less civilized countries where there has been but little artificial selection. Careful observers are convinced that a damp climate affects the growth of the hair, and that with the hair the horns are correlated. Mountain breeds always differ from lowland breeds; and a mountainous country would probably affect the hind limbs from exercising them more, and possibly even the form of the pelvis; and then by the law of homologous variation, the front limbs and even the head would probably be affected. The shape, also, of the pelvis might affect by pressure the shape of the head of the young in the womb. The laborious breathing necessary in high regions would, we have some reason to believe, increase the size of the chest; and again correlation would come into play. Animals kept by savages in different countries often have to struggle for their own subsistence, and would be exposed to a certain extent to natural selection, and individuals with slightly different constitutions would succeed best under different climates; and there is reason to believe that constitution and colour are correlated. A good observer, also, states that in cattle susceptibility to the attacks of flies is correlated with colour, as is the liability to be poisoned by certain plants; so that colour would be thus subjected to the action of natural selection. But we are far too ignorant to speculate on the relative importance of the several known and unknown laws of variation; and I have here alluded to them only to show that, if we are unable to account for the characteristic differences of our domestic breeds, which nevertheless we generally admit to have arisen through ordinary generation, we ought not to lay too much stress on our ignorance of the precise cause of the slight analogous differences between species. I might have adduced for this same purpose the differences between the races of man, which are so strongly marked; I may add that some little light can apparently be thrown on the origin of these differences, chiefly through sexual selection of a particular kind, but without here entering on copious details my reasoning would appear frivolous.

The foregoing remarks lead me to say a few words on the protest lately made by some naturalists, against the utilitarian doctrine that every detail of structure has been produced for the good of its possessor. They believe that very many structures have been created for beauty in the eyes of man, or for mere variety. This doctrine, if true, would be absolutely fatal to my theory. Yet I fully admit that many structures are of no direct use to their possessors. Physical conditions probably have had some little effect on structure, quite independently of any good thus gained. Correlation of growth has no doubt played a most important part, and a useful modification of one part will often have entailed on other parts diversified changes of no direct use. So again characters which formerly were useful, or which formerly had arisen from correlation of growth, or from other unknown cause, may reappear from the law of reversion, though now of no direct use. The effects of sexual selection, when displayed in beauty to charm the females, can be called useful only in rather a forced sense. But by far the most important consideration is that the chief part of the organisation of every being is simply due to inheritance; and consequently, though each being assuredly is well fitted for its place in nature, many structures now have no direct relation to the habits of life of each species. Thus, we can hardly believe that the webbed feet of the upland goose or of the frigate-bird are of special use to these birds; we cannot believe that the same bones in the arm of the monkey, in the fore leg of the horse, in the wing of the bat, and in the flipper of the seal, are of special use to these animals. We may safely attribute these structures to inheritance. But to the progenitor of the upland goose and of the frigate-bird, webbed feet no doubt were as useful as they now are to the most aquatic of existing birds. So we may believe that the progenitor of the seal had not a flipper, but a foot with five toes fitted for walking or grasping; and we may further venture to believe that the several bones in the limbs of the monkey, horse, and bat, which have been inherited from a common progenitor, were formerly of more special use to that progenitor, or its progenitors, than they now are to these animals having such widely diversified habits. Therefore we may infer that these several bones might have been acquired through natural selection, subjected formerly, as now, to the several laws of inheritance, reversion, correlation of growth, etc. Hence every detail of structure in every living creature (making some little allowance for the direct action of physical conditions) may be viewed, either as having been of special use to some ancestral form, or as being now of special use to the descendants of this form – either directly, or indirectly through the complex laws of growth.

Natural selection cannot possibly produce any modification in any one species exclusively for the good of another species; though throughout nature one species incessantly takes advantage of, and profits by, the structure of another. But natural selection can and does often produce structures for the direct injury of other species, as we see in the fang of the adder, and in the ovipositor of the ichneumon, by which its eggs are deposited in the living bodies of other insects. If it could be proved that any part of the structure of any one species had been formed for the exclusive good of another species, it would annihilate my theory, for such could not have been produced through natural selection. Although many statements may be found in works on natural history to this effect, I cannot find even one which seems to me of any weight. It is admitted that the rattlesnake has a poison-fang for its own defence and for the destruction of its prey; but some authors suppose that at the same time this snake is furnished with a rattle for its own injury, namely, to warn its prey to escape. I would almost as soon believe that the cat curls the end of its tail when preparing to spring, in order to warn the doomed mouse. But I have not space here to enter on this and other such cases.

Natural selection will never produce in a being anything injurious to itself, for natural selection acts solely by and for the good of each. No organ will be formed, as Paley has remarked, for the purpose of causing pain or for doing an injury to its possessor. If a fair balance be struck between the good and evil caused by each part, each will be found on the whole advantageous. After the lapse of time, under changing conditions of life, if any part comes to be injurious, it will be modified; or if it be not so, the being will become extinct, as myriads have become extinct.

Natural selection tends only to make each organic being as perfect as, or slightly more perfect than, the other inhabitants of the same country with which it has to struggle for existence. And we see that this is the degree of perfection attained under nature. The endemic productions of New Zealand, for instance, are perfect one compared with another; but they are now rapidly yielding before the advancing legions of plants and animals introduced from Europe. Natural selection will not produce absolute perfection, nor do we always meet, as far as we can judge, with this high standard under nature. The correction for the aberration of light is said, on high authority, not to be perfect even in that most perfect organ, the eye. If our reason leads us to admire with enthusiasm a multitude of inimitable contrivances in nature, this same reason tells us, though we may easily err on both sides, that some other contrivances are less perfect. Can we consider the sting of the wasp or of the bee as perfect, which, when used against many attacking animals, cannot be withdrawn, owing to the backward serratures, and so inevitably causes the death of the insect by tearing out its viscera?

 

If we look at the sting of the bee, as having originally existed in a remote progenitor as a boring and serrated instrument, like that in so many members of the same great order, and which has been modified but not perfected for its present purpose, with the poison originally adapted to cause galls subsequently intensified, we can perhaps understand how it is that the use of the sting should so often cause the insect's own death: for if on the whole the power of stinging be useful to the community, it will fulfil all the requirements of natural selection, though it may cause the death of some few members. If we admire the truly wonderful power of scent by which the males of many insects find their females, can we admire the production for this single purpose of thousands of drones, which are utterly useless to the community for any other end, and which are ultimately slaughtered by their industrious and sterile sisters? It may be difficult, but we ought to admire the savage instinctive hatred of the queen-bee, which urges her instantly to destroy the young queens her daughters as soon as born, or to perish herself in the combat; for undoubtedly this is for the good of the community; and maternal love or maternal hatred, though the latter fortunately is most rare, is all the same to the inexorable principle of natural selection. If we admire the several ingenious contrivances, by which the flowers of the orchis and of many other plants are fertilised through insect agency, can we consider as equally perfect the elaboration by our fir-trees of dense clouds of pollen, in order that a few granules may be wafted by a chance breeze on to the ovules?

SUMMARY OF CHAPTER.

We have in this chapter discussed some of the difficulties and objections which may be urged against my theory. Many of them are very grave; but I think that in the discussion light has been thrown on several facts, which on the theory of independent acts of creation are utterly obscure. We have seen that species at any one period are not indefinitely variable, and are not linked together by a multitude of intermediate gradations, partly because the process of natural selection will always be very slow, and will act, at any one time, only on a very few forms; and partly because the very process of natural selection almost implies the continual supplanting and extinction of preceding and intermediate gradations. Closely allied species, now living on a continuous area, must often have been formed when the area was not continuous, and when the conditions of life did not insensibly graduate away from one part to another. When two varieties are formed in two districts of a continuous area, an intermediate variety will often be formed, fitted for an intermediate zone; but from reasons assigned, the intermediate variety will usually exist in lesser numbers than the two forms which it connects; consequently the two latter, during the course of further modification, from existing in greater numbers, will have a great advantage over the less numerous intermediate variety, and will thus generally succeed in supplanting and exterminating it.

We have seen in this chapter how cautious we should be in concluding that the most different habits of life could not graduate into each other; that a bat, for instance, could not have been formed by natural selection from an animal which at first could only glide through the air.

We have seen that a species may under new conditions of life change its habits, or have diversified habits, with some habits very unlike those of its nearest congeners. Hence we can understand, bearing in mind that each organic being is trying to live wherever it can live, how it has arisen that there are upland geese with webbed feet, ground woodpeckers, diving thrushes, and petrels with the habits of auks.

Although the belief that an organ so perfect as the eye could have been formed by natural selection, is more than enough to stagger any one; yet in the case of any organ, if we know of a long series of gradations in complexity, each good for its possessor, then, under changing conditions of life, there is no logical impossibility in the acquirement of any conceivable degree of perfection through natural selection. In the cases in which we know of no intermediate or transitional states, we should be very cautious in concluding that none could have existed, for the homologies of many organs and their intermediate states show that wonderful metamorphoses in function are at least possible. For instance, a swim-bladder has apparently been converted into an air-breathing lung. The same organ having performed simultaneously very different functions, and then having been specialised for one function; and two very distinct organs having performed at the same time the same function, the one having been perfected whilst aided by the other, must often have largely facilitated transitions.

We are far too ignorant, in almost every case, to be enabled to assert that any part or organ is so unimportant for the welfare of a species, that modifications in its structure could not have been slowly accumulated by means of natural selection. But we may confidently believe that many modifications, wholly due to the laws of growth, and at first in no way advantageous to a species, have been subsequently taken advantage of by the still further modified descendants of this species. We may, also, believe that a part formerly of high importance has often been retained (as the tail of an aquatic animal by its terrestrial descendants), though it has become of such small importance that it could not, in its present state, have been acquired by natural selection, – a power which acts solely by the preservation of profitable variations in the struggle for life.

Natural selection will produce nothing in one species for the exclusive good or injury of another; though it may well produce parts, organs, and excretions highly useful or even indispensable, or highly injurious to another species, but in all cases at the same time useful to the owner. Natural selection in each well-stocked country, must act chiefly through the competition of the inhabitants one with another, and consequently will produce perfection, or strength in the battle for life, only according to the standard of that country. Hence the inhabitants of one country, generally the smaller one, will often yield, as we see they do yield, to the inhabitants of another and generally larger country. For in the larger country there will have existed more individuals, and more diversified forms, and the competition will have been severer, and thus the standard of perfection will have been rendered higher. Natural selection will not necessarily produce absolute perfection; nor, as far as we can judge by our limited faculties, can absolute perfection be everywhere found.

On the theory of natural selection we can clearly understand the full meaning of that old canon in natural history, "Natura non facit saltum." This canon, if we look only to the present inhabitants of the world, is not strictly correct, but if we include all those of past times, it must by my theory be strictly true.

It is generally acknowledged that all organic beings have been formed on two great laws – Unity of Type, and the Conditions of Existence. By unity of type is meant that fundamental agreement in structure, which we see in organic beings of the same class, and which is quite independent of their habits of life. On my theory, unity of type is explained by unity of descent. The expression of conditions of existence, so often insisted on by the illustrious Cuvier, is fully embraced by the principle of natural selection. For natural selection acts by either now adapting the varying parts of each being to its organic and inorganic conditions of life; or by having adapted them during long-past periods of time: the adaptations being aided in some cases by use and disuse, being slightly affected by the direct action of the external conditions of life, and being in all cases subjected to the several laws of growth. Hence, in fact, the law of the Conditions of Existence is the higher law; as it includes, through the inheritance of former adaptations, that of Unity of Type.

7. INSTINCT

Instincts comparable with habits, but different in their origin. Instincts graduated. Aphides and ants. Instincts variable. Domestic instincts, their origin. Natural instincts of the cuckoo, ostrich, and parasitic bees. Slave-making ants. Hive-bee, its cell-making instinct. Difficulties on the theory of the Natural Selection of instincts. Neuter or sterile insects. Summary.

The subject of instinct might have been worked into the previous chapters; but I have thought that it would be more convenient to treat the subject separately, especially as so wonderful an instinct as that of the hive-bee making its cells will probably have occurred to many readers, as a difficulty sufficient to overthrow my whole theory. I must premise, that I have nothing to do with the origin of the primary mental powers, any more than I have with that of life itself. We are concerned only with the diversities of instinct and of the other mental qualities of animals within the same class.

I will not attempt any definition of instinct. It would be easy to show that several distinct mental actions are commonly embraced by this term; but every one understands what is meant, when it is said that instinct impels the cuckoo to migrate and to lay her eggs in other birds' nests. An action, which we ourselves should require experience to enable us to perform, when performed by an animal, more especially by a very young one, without any experience, and when performed by many individuals in the same way, without their knowing for what purpose it is performed, is usually said to be instinctive. But I could show that none of these characters of instinct are universal. A little dose, as Pierre Huber expresses it, of judgment or reason, often comes into play, even in animals very low in the scale of nature.

Frederick Cuvier and several of the older metaphysicians have compared instinct with habit. This comparison gives, I think, a remarkably accurate notion of the frame of mind under which an instinctive action is performed, but not of its origin. How unconsciously many habitual actions are performed, indeed not rarely in direct opposition to our conscious will! yet they may be modified by the will or reason. Habits easily become associated with other habits, and with certain periods of time and states of the body. When once acquired, they often remain constant throughout life. Several other points of resemblance between instincts and habits could be pointed out. As in repeating a well-known song, so in instincts, one action follows another by a sort of rhythm; if a person be interrupted in a song, or in repeating anything by rote, he is generally forced to go back to recover the habitual train of thought: so P. Huber found it was with a caterpillar, which makes a very complicated hammock; for if he took a caterpillar which had completed its hammock up to, say, the sixth stage of construction, and put it into a hammock completed up only to the third stage, the caterpillar simply re-performed the fourth, fifth, and sixth stages of construction. If, however, a caterpillar were taken out of a hammock made up, for instance, to the third stage, and were put into one finished up to the sixth stage, so that much of its work was already done for it, far from feeling the benefit of this, it was much embarrassed, and, in order to complete its hammock, seemed forced to start from the third stage, where it had left off, and thus tried to complete the already finished work.

 

If we suppose any habitual action to become inherited – and I think it can be shown that this does sometimes happen – then the resemblance between what originally was a habit and an instinct becomes so close as not to be distinguished. If Mozart, instead of playing the pianoforte at three years old with wonderfully little practice, had played a tune with no practice at all, he might truly be said to have done so instinctively. But it would be the most serious error to suppose that the greater number of instincts have been acquired by habit in one generation, and then transmitted by inheritance to succeeding generations. It can be clearly shown that the most wonderful instincts with which we are acquainted, namely, those of the hive-bee and of many ants, could not possibly have been thus acquired.

It will be universally admitted that instincts are as important as corporeal structure for the welfare of each species, under its present conditions of life. Under changed conditions of life, it is at least possible that slight modifications of instinct might be profitable to a species; and if it can be shown that instincts do vary ever so little, then I can see no difficulty in natural selection preserving and continually accumulating variations of instinct to any extent that may be profitable. It is thus, as I believe, that all the most complex and wonderful instincts have originated. As modifications of corporeal structure arise from, and are increased by, use or habit, and are diminished or lost by disuse, so I do not doubt it has been with instincts. But I believe that the effects of habit are of quite subordinate importance to the effects of the natural selection of what may be called accidental variations of instincts; – that is of variations produced by the same unknown causes which produce slight deviations of bodily structure.

No complex instinct can possibly be produced through natural selection, except by the slow and gradual accumulation of numerous, slight, yet profitable, variations. Hence, as in the case of corporeal structures, we ought to find in nature, not the actual transitional gradations by which each complex instinct has been acquired – for these could be found only in the lineal ancestors of each species – but we ought to find in the collateral lines of descent some evidence of such gradations; or we ought at least to be able to show that gradations of some kind are possible; and this we certainly can do. I have been surprised to find, making allowance for the instincts of animals having been but little observed except in Europe and North America, and for no instinct being known amongst extinct species, how very generally gradations, leading to the most complex instincts, can be discovered. The canon of "Natura non facit saltum" applies with almost equal force to instincts as to bodily organs. Changes of instinct may sometimes be facilitated by the same species having different instincts at different periods of life, or at different seasons of the year, or when placed under different circumstances, etc.; in which case either one or the other instinct might be preserved by natural selection. And such instances of diversity of instinct in the same species can be shown to occur in nature.

Again as in the case of corporeal structure, and conformably with my theory, the instinct of each species is good for itself, but has never, as far as we can judge, been produced for the exclusive good of others. One of the strongest instances of an animal apparently performing an action for the sole good of another, with which I am acquainted, is that of aphides voluntarily yielding their sweet excretion to ants: that they do so voluntarily, the following facts show. I removed all the ants from a group of about a dozen aphides on a dock-plant, and prevented their attendance during several hours. After this interval, I felt sure that the aphides would want to excrete. I watched them for some time through a lens, but not one excreted; I then tickled and stroked them with a hair in the same manner, as well as I could, as the ants do with their antennae; but not one excreted. Afterwards I allowed an ant to visit them, and it immediately seemed, by its eager way of running about, to be well aware what a rich flock it had discovered; it then began to play with its antennae on the abdomen first of one aphis and then of another; and each aphis, as soon as it felt the antennae, immediately lifted up its abdomen and excreted a limpid drop of sweet juice, which was eagerly devoured by the ant. Even the quite young aphides behaved in this manner, showing that the action was instinctive, and not the result of experience. But as the excretion is extremely viscid, it is probably a convenience to the aphides to have it removed; and therefore probably the aphides do not instinctively excrete for the sole good of the ants. Although I do not believe that any animal in the world performs an action for the exclusive good of another of a distinct species, yet each species tries to take advantage of the instincts of others, as each takes advantage of the weaker bodily structure of others. So again, in some few cases, certain instincts cannot be considered as absolutely perfect; but as details on this and other such points are not indispensable, they may be here passed over.

As some degree of variation in instincts under a state of nature, and the inheritance of such variations, are indispensable for the action of natural selection, as many instances as possible ought to have been here given; but want of space prevents me. I can only assert, that instincts certainly do vary – for instance, the migratory instinct, both in extent and direction, and in its total loss. So it is with the nests of birds, which vary partly in dependence on the situations chosen, and on the nature and temperature of the country inhabited, but often from causes wholly unknown to us: Audubon has given several remarkable cases of differences in nests of the same species in the northern and southern United States. Fear of any particular enemy is certainly an instinctive quality, as may be seen in nestling birds, though it is strengthened by experience, and by the sight of fear of the same enemy in other animals. But fear of man is slowly acquired, as I have elsewhere shown, by various animals inhabiting desert islands; and we may see an instance of this, even in England, in the greater wildness of all our large birds than of our small birds; for the large birds have been most persecuted by man. We may safely attribute the greater wildness of our large birds to this cause; for in uninhabited islands large birds are not more fearful than small; and the magpie, so wary in England, is tame in Norway, as is the hooded crow in Egypt.

That the general disposition of individuals of the same species, born in a state of nature, is extremely diversified, can be shown by a multitude of facts. Several cases also, could be given, of occasional and strange habits in certain species, which might, if advantageous to the species, give rise, through natural selection, to quite new instincts. But I am well aware that these general statements, without facts given in detail, can produce but a feeble effect on the reader's mind. I can only repeat my assurance, that I do not speak without good evidence.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 
Рейтинг@Mail.ru